

N9030A РХА серии X

Технические данные

Сертифицирован на соответствие классу С стандарта Доступные диапазоны частот

N9030A-503 от 3 Гц до 3,6 ГГц N9030A-508 от 3 Гц до 8,4 ГГц N9030A-513 от 3 Гц до 13,6 ГГц N9030A-526 от 3 Гц до 26,5 ГГц N9030A-543 от 3 Гц до 43 ГГц N9030A-544 от 3 Гц до 44 ГГц N9030A-550 от 3 Гц до 50 ГГц

Содержание

Определения и условия	3
Гарантированные частотные и временные характеристики	4
Гарантированные характеристики погрешностей и пределов измерения уровня	6
Гарантированные характеристики динамического диапазона	9
Гарантированные характеристики набора измерений мощности	16
Общие характеристики	17
Входы и выходы	19
Другие дополнительные выходы	21
I/O анализатор	22
I/Q анализатор - опция B25	23
I/Q анализатор - опция B40	24
I/O анализатор - опция B1X	25
Тематическая литература	27

"Готовый к будущему" анализатор сигналов РХА компании Agilent является эволюционной заменой текущего поколения анализаторов с высокими техническими характеристиками. Он поможет поддерживать былые достижения, совершенствовать имеющиеся проектные решения и ускорять внедрение будущих нововведений.

Его высокие рабочие характеристики, гибкость, производительность и совместимость позволяют браться за решение ответственных прикладных задач в аэрокосмической и оборонной отраслях, системах коммерческой радиосвязи и других областях.

- Обнаружение новых уровней деталей сигнала с использованием выдающихся РЧ характеристик анализатора
- Увеличение производительности испытаний и защита инвестиций, вложенных в аппаратные средства системы
- Обновление существующих систем с использованием замены, обеспечивающей высокую степень совместимости

Определения и условия

Гарантированные технические характеристики определяют уровень рабочих параметров, подтверждённых гарантиями на изделие, и обеспечиваются в диапазоне температур от 0 до +55 °C, если другое не оговорено дополнительно.

Значения 95-процентилей указывают ширину генеральной совокупности (приблизительно $2~\sigma$) допустимых отклонений рабочих параметров, ожидаемых в 95% случаев с достоверностью 95% для любой температуры окружающей среды в интервале от $+20~\phi$ с . Помимо статистических характеристик результатов измерений эти значения включают также эффекты, связанные с погрешностями внешних образцовых калибровочных мер. Эти значения не гарантируются. Эти значения время от времени обновляются, если наблюдаются значительные изменения в статистических характеристиках измерительных приборов, используемых при производстве продукции.

Типовые значения характеристик дают дополнительную информацию о характеристиках прибора, но не поддерживаются гарантиями на прибор. Это значения рабочих параметров, которые выходят за рамки гарантированных характеристик, и с достоверностью 95% реализуются для 80% приборов в интервале температур окружающей среды от +20 до +30 °C. Типовые значения характеристик не включают погрешности измерений.

Номинальные величины представляют ожидаемые характеристики или описывают рабочие параметры прибора, которые полезно знать при его эксплуатации, но значения которых не гарантированы.

Анализатор соответствует своим гарантированным техническим характеристикам при следующих условиях.

- Анализатор эксплуатируется в пределах срока, не превышающего его межповерочный интервал.
- В режиме автоматической связанности при управлении режимами работы, за исключением режима Auto Sweep Time Rules = Accy (автоматическая установка времени развертки).
- При установке режима открытого входа, если частота сигнала <10 МГц.
- Анализатор был выдержан при температуре окружающей среды в пределах допустимого рабочего диапазона температур не менее двух часов, прежде чем он был включён, если перед этим он находился на хранении в диапазоне температур в пределах допустимого диапазона хранения, но за пределами допустимого рабочего диапазона.
- Анализатор находился во включенном состоянии не менее 30 минут, и режим Auto Align (автонастройка) установлен в состояние Normal (нормальный); если режим Auto Align (автонастройка) установлен в состояние Off (выключен) или Partial (частичный), то настройки должны быть выполнены достаточно недавно, чтобы предотвратить появление сообщения Alert (предупреждение). Если условие Alert (предупреждение) переходит из состояния Time (время) или Temperature (температура) в одно из состояний запрещённой длительности, анализатор может перестать соответствовать гарантированным техническим характеристикам, не информируя об этом пользователя..

Данная брошюра с техническими данными анализаторов сигналов РХА содержит сводку полных технических характеристик и условий. Руководство по техническим характеристикам анализаторов сигналов РХА (PXA Signal Analyzer Specification Guide), содержащее полную информацию по техническим характеристикам, может быть получено с web-сайта компании Agilent:

www.agilent.com/find/pxa specifications

Гарантированные частотные и временные характеристики

Лиапазон настот	Отипытый вуол	Закрытый вход			
Диапазон частот	Открытый вход				
Опция 503	от 3 Гц до 3,6 ГГц	от 10 МГц до 3,6 ГГц			
Опция 508	от 3 Гц до 8,4 ГГц	от 10 МГц до 8,4 ГГц			
Опция 513	от 3 Гц до 13,6 ГГц	от 10 МГц до 13,6 ГГц			
Опция 526	от 3 Гц до 26,5 ГГц	от 10 МГц до 26,5 ГГц			
Опция 543	от 3 Гц до 43 ГГц	неприменимо			
Опция 544	от 3 Гц до 44 ГГц	неприменимо			
Опция 550	от 3 Гц до 50 ГГц	неприменимо			
Полоса Гармоника гетеродина (N					
0 1	от 3 Гц до 3,6 ГГц				
1 1	от 3,5 до 8,4 ГГц				
2 2	от 8,3 до 13,6 ГГц				
3 2	от 13,5 до 17,1 ГГц				
4 4	от 17 до 26,5 ГГц				
5 4	от 26,4 до 34,5 ГГц				
6 8	от 34,4 до 50 ГГц				
Прецизионный генератор опорной ч	настоты				
Погрешность		± [(время с момента последней настройки х скорость старения)			
		сть + погрешность калибровки]			
Скорость старения	± 1 x 10 ⁻⁷ за год				
	± 1,5 x 10 ⁻⁷ за два года				
Температурная нестабильность	. 1 10 9				
в интервале от 20 до 30 °C в диапазоне рабочих температур	± 1,5 x 10 ⁻⁸ ± 5 x 10 ⁻⁸				
Достижимая погрешность	± 4 x 10 ⁻⁸				
начальной калибровки	± 4 × 10 °				
Пример расчёта погрешности опорной	$= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8})$	$+ 4 \times 10^{-8}$) = $\pm 1.55 \times 10^{-7}$			
частоты через год после последней					
настройки, от 20 до 30 °C					
Остаточная ЧМ	≤ (0,25 Гц x N), размах, за 20				
центральная частота СF = 1 ГГц,	см. таблицу "Полоса" выше д	пя данного номера гармоники гетеродина (N)			
полоса пропускания 10 Гц,					
полоса видеофильтра 10 Гц					
Погрешность отсчета частоты (нача	<u> </u>	,			
± (частота маркера x погрешность опорной		оа + 5 % х полоса пропускания +			
+ 2 Гц + 0,5 х разрешение по горизонтали	1)				
Счетчик частоты маркера					
Погрешность		ость опорной частоты + 0,100 Гц)			
Погрешность счетчика дельта-маркера	± (разность частот х погрешно	ость опорной частоты + 0,141 Гц)			
Разрешение счетчика	0,001 Гц				
Полоса обзора (БПФ и режим со св	випированием)				
Диапазон	0 Гц (нулевая полоса обзора),	от 10 Гц до максимальной частоты анализатора			
Разрешение	2 Гц	·			
Погрешность					
режим со свипированием	± (0,10% x полоса обзора + р	азрешение по частоте)			
режим БПФ	± (0,10% х полоса обзора + разрешение по частоте)				

^{1.} Разрешение по горизонтали равно: полоса обзора/(число точек развертки – 1)

Время развёртки и запуск		
Пределы	полоса обзора = 0 Гц	от 1 мкс до 6000 с
пределы	полоса оозора – о тц полоса обзора ≥ 10 Гц	от 1 мс до 4000 с
Погрешность	полоса обзора ≥ 10 Гц, режим со свипированием	± 0,01%, номинально
Погрошность	полоса обзора ≥ 10 Гц, режим БПФ	± 40%, номинально
	полоса обзора = 0 Гц	± 0,01%, номинально
Запуск развёртки	автоматический, от сети, от видеотракта, внешний	1, внешний 2, по ВЧ пакету, от период. таймер
Задержка запуска	полоса обзора = 0 Гц или режим БПФ	от —150 до +500 мс
	полоса обзора ≥ 10 Гц, режим со свипированием	от 0 до 500 мс
	разрешение	0,1 мкс
Временное стробирование		
Методы стробирования	стробирование местного гетеродина, стробирован	ие видеотракта, стробирование БПФ
Диапазон длительности стробирования	от 1 мкс до 5,0 с	
(кроме стробирования БПФ)		
Диапазон задержки стробирования	от 0 до 100,0 с	
Джиттер задержки стробирования	33,3 нс (размах), номинально	
Число точек развертки (графика)		
Все полосы обзора	от 1 до 40001	
Полоса пропускания		
Диапазон (полоса на уровне минус 3,01 дБ)	от 1 Гц до 3 МГц (с шагом 10 %), 4, 5, 6 и 8 МГц	
Погрешность полосы пропускания	Диапазон полос пропускания	
(по мощности)	от 1 Гц до 100 кГц	± 0,5% (± 0,022 дБ)
	от 110 кГц до 1,0 МГц (центр. частота CF < 3,6 ГГц)	± 1,0% (± 0,044 дБ)
	от 1,1 до 2,0 МГц (центр. частота CF < 3,6 ГГц)	± 0,07 дБ, номинально
	от 2,2 до 3 МГц (центр. частота CF < 3,6 ГГц) от 4 до 8 МГц (центр. частота CF < 3,6 ГГц)	± 0,10 дБ, номинально ± 0,20 дБ, номинально
Погрешность полосы пропускания	Диапазон полос пропускания	± 0,20 дв, номинально
(по уровню минус 3,01 дБ)	от 1 Гц до 1,3 МГц	± 2%, номинально
Избирательность (минус 60 дБ/минус 3 дБ)		4,1:1, номинально
Полосы пропускания для измерений ЭМП при	200 Гц, 9 кГц, 120 кГц, 1 МГц	(требуется опция ЕМС)
оценке на соответствие нормам CISPR		, , , ,
Полосы пропускания для измерений ЭМП при	10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц	(требуется опция ЕМС)
оценке на соответствие нормам MIL STD 461E		
Полоса анализа/демодуляции 1		
Максимальная ширина полосы	Стандартная комплектация	10 МГц
	Опция В25	25 МГц
	Опция В40	40 MΓμ
	Опция В1Х	140 МГц
Полоса видеофильтра		
Пределы установки	от 1 Гц до 3 МГц (с шагом 10 %), 4, 5, 6, 8 МГц и ши	
Погрешность	± 6 % номинально (в режиме со свипированием г	и при нулевой полосе обзора)
Скорость измерений ²		
Измерение в режиме местного управления	10 мс (100/с), номинально	
и скорость обновления изображения на экране	10 мс (100/с), номинально	
Измерение в режиме дистанционного управления и скорость пересылки	то мс (тоо/с), номинально	
данных по локальной сети (LAN)		
Поиск максимума с использованием маркера	2,5 мс, номинально	
Настройка центральной частоты	43 мс, номинально	
и пересылка данных (РЧ)		
Настройка центральной частоты	69 мс, номинально	
и пересылка данных (СВЧ)		
Переключение вида измерения/режима	40 мс, номинально	
Попоса знапиза, это мановонное знаночно роди	ост вроилекання доступной около понтральной настор	

¹ Полоса анализа это мгновенное значение полосы пропускания, доступной около центральной частоты, с использованием которой входной сигнал может быть оцифрован для последующего анализа или обработки во временной, частотной или модуляционной областях. 2. Число точек развёртки = 101

Гарантированные характеристики погрешностей и пределов измерения уровня

Диапазон уровней			
Пределы измерения	от среднего уровня собс	твенных шумов до максимального	безопасного уровня на входе
Пределы ослабления входного аттенюатора	от 0 до 70 дБ с шагом 2		
(от 3 Гц до 50 ГГц)			
Электронный аттенюатор (опция ЕАЗ)		
Диапазон частот	от 3 Гц до 3,6 ГГц		
Пределы ослабления:			
электронный аттенюатор	от 0 до 24 дБ с шагом 1	дБ	
общие пределы ослабления	от 0 до 94 дБ с шагом 1	дБ	
(механический + электронный)			
Максимальный безопасный уровень	на входе		
Суммарная средняя мощность	+30 дБм (1 Вт)		
(с предусилителем или без предусилителя)			
Пиковая мощность в импульсе		ительности импульса <10 мкс, коэ	ффициенте заполнения <1%,
	ослаблении входного ат	тенюатора ≥ 30 дБ	
Напряжение постоянного тока			
открытый вход	± 0,2 B		
закрытый вход	± 100 В (для опций диаг	пазона частот 503, 508, 513 или 52	(6)
Пределы шкалы экрана			
Логарифмическая шкала	от 0,1 до 1 дБ/дел с шаг от 1 до 20 дБ/дел с шаго	ом 0,1 дБ ом 1 дБ (10 делений масштабной с	етки)
Линейная шкала	10 делений		·
Единицы шкалы	dBm (дБм), dBmV (дБмВ), dBµV (дБмкВ), dBmA (дБмА), dBµ	А (дБмкА), V (В), W (Вт), А (А)
Частотная характеристика	, , , , , , , , , , , , , , , , , , ,	Нормированное значение	95-й процентиль (≈2σ)
(Ослабление входного аттенюатора 10 дБ, от	20 до 30 °C. настройка ча		<u> </u>
Радиочастотный/миллиметровый диапазон	от 3 Гц до 10 МГц	± 0,46 дБ	Simoron na ladrotax e,e rr q vi bbille
(опции 503, 508, 513, 526)	от 10 МГц до 3,6 ГГц	± 0,35 дБ	± 0,16 дБ
(6114777 600, 600, 610, 620)	от 3,5 до 8,4 ГГц	± 1,5 дБ	± 0,39 дБ
	от 8,3 до 13,6 ГГц	± 2,0 дБ	± 0,45 дБ
	от 13,5 до 22,0 ГГц	± 2,0 дБ	± 0,62 дБ
	от 22,0 до 26,5 ГГц	± 2,0 дБ	± 0,82 дБ
Миллиметровый диапазон	от 3 Гц до 20 МГц	± 0,46 дБ	
(опции 543, 544, 550)	от 20 до 50 МГц	± 0,35 дБ	± 0,19 дБ
(от 50 МГц до 3,6 ГГц	± 0,35 дБ	± 0,15 дБ
	от 3,5 до 5,2 ГГц	± 1,7 дБ	± 0,70 дБ
	от 5,2 до 8,4 ГГц	± 1,5 дБ	± 0,57 дБ
	от 8,3 до 13,6 ГГц	± 2,0 дБ	± 0,54 дБ
	от 13,5 до 17,1 ГГц	± 2,0 дБ	± 0,64 дБ
	от 17,0 до 22,0 ГГц	± 2,0 дБ	± 0,72 дБ
	от 22,0 до 26,5 ГГц	± 2,5 дБ	± 0,71 дБ
	от 26,4 до 34,5 ГГц	± 2,5 дБ	± 0,93 дБ
	от 34,4 до 50 ГГц	± 3,2 дБ	± 1,24 дБ
Предусилитель включён (ослабление 0 дБ) (о	опции Р03, Р08, Р13, Р26,	P43, P44, P50)	
Радиочастотный/миллиметровый диапазон	от 9 до 100 кГц		± 0,36 дБ
(опции 503, 508, 513, 526)	от 100 кГц до 50 МГц	± 0,68 дБ	± 0,26 дБ
	от 50 МГц до 3,6 ГГц	± 0,55 дБ	± 0,28 дБ
	от 3,5 до 8,4 ГГц	± 2,0 дБ	± 0,64 дБ
	от 8,3 до 13,6 ГГц	± 2,3 дБ	± 0,76 дБ
	от 13,5 до 17,1 ГГц	± 2,5 дБ	± 0,95 дБ
	от 17,0 до 22,0 ГГц	± 3,0 дБ	± 1,41 дБ
	от 22,0 до 26,5 ГГц	± 3,5 дБ	± 1,61 дБ

Миллиметровый диапазон (опции 543, 544, 550)	от 9 до 100 кГц от 100 кГц до 50 МГц от 50 МГц до 3,6 ГГц от 3,5 до 5,2 ГГц от 5,2 до 8,4 ГГц от 8,3 до 13,6 ГГц от 13,5 до 17,1 ГГц от 17,0 до 22,0 ГГц от 22,0 до 26,5 ГГц от 26,4 до 34,5 ГГц от 34,4 до 50 ГГц	± 0,68 дБ ± 0,60 дБ ± 2,0 дБ ± 2,0 дБ ± 2,3 дБ ± 2,5 дБ ± 3,0 дБ ± 3,5 дБ ± 3,0 дБ ± 4,1 дБ	± 0,40 дБ ± 0,34 дБ ± 0,31 дБ ± 0,81 дБ ± 0,70 дБ ± 0,79 дБ ± 0,88 дБ ± 1,07 дБ ± 1,03 дБ ± 1,35 дБ ± 1,69 дБ
Погрешность ослабления входного а	аттенюатора при его пере	ключении	
Относительно ослабления 10 дБ, предусилитель выключен			
На частоте 50 МГц (опорная частота)	ослабление от 12 до 40 дБ ослабление от 2 до 8 дБ ослабление 0 дБ	± 0,14 дБ ± 0,18 дБ	\pm 0,03 дБ (тип. значение) \pm 0,05 дБ (тип. значение) \pm 0,05 дБ, номинально
Ослабление > 2 дБ от 3 Гц до 3,6 ГГц от 3,5 до 8,4 ГГц от 8,3 до 13,6 ГГц от 13,5 до 26,5 ГГц от 25,4 до 50 ГГц			± 0,3 дБ, номинально ± 0,5 дБ, номинально ± 0,7 дБ, номинально ± 0,7 дБ, номинально ± 1,0 дБ, номинально
Суммарная абсолютная погрешност	ь измерения уровня		
(Ослабление входного аттенюатора 10 дБ; с уровень входного сигнала от минус 10 до ми опорный уровень - любой; тип шкалы - люб	инус 50 дБм; все установки авто	матически связаны, за исключ	АЧХ)
Предусилитель включён (опции РОЗ, РОВ, Р13, Р26, Р43, Р44 и Р50)	на всех частотах	± (0,36 + неравномерность	AYX)
Входной коэффициент стоячей воль	ы по напряжению (КСВн)		
		Опции диапазона частот 503, 508, 513, 526	Опции диапазона частот 543, 544, 550
(Ослабление входного аттенюатора 10 дБ)	50 MFų or 10 MFų до 3,6 FFų or 3,5 до 8,4 FFų or 8,3 до 13,6 FFų or 13,5 до 17,1 FFų or 17,0 до 26,5 FFų or 26,4 до 34,5 FFų	1,07: 1, номинально 1,139 (95-й процентиль) 1,290 (95-й процентиль) 1,388 (95-й процентиль) 1,403 (95-й процентиль) 1,475 (95-й процентиль) неприменимо неприменимо	1,025: 1, номинально 1,134 (95-й процентиль) 1,152 (95-й процентиль) 1,178 (95-й процентиль) 1,204 (95-й процентиль) 1,331 (95-й процентиль) 1,321 (95-й процентиль) 1,321 (95-й процентиль) 1,378 (95-й процентиль)
Предусилитель включён (ослабление входного аттенюатора 0 дБ) (опции РОЗ. РОВ, Р13, Р26, Р43, Р44 и Р50)	от 10 МГц до 3,6 ГГц от 3,5 до 8,4 ГГц от 8,3 до 13,6 ГГц от 13,5 до 17,1 ГГц от 17,0 до 26,5 ГГц	1,45 (95-й процентиль) 1,54 (95-й процентиль) 1,57 (95-й процентиль) 1,48 (95-й процентиль) 1,54 (95-й процентиль)	1,193 (95-й процентиль) 1,50 (95-й процентиль) 1,310 (95-й процентиль) 1,330 (95-й процентиль) 1,339 (95-й процентиль)

Погрешность полосы пропускания п	ри её переключении (отн	осительно полосы пропускания 30 кГц)
от 1 Гц до 1,5 МГц	± 0,03 дБ	
от 1,6 до 2,7 МГц	± 0,05 дБ	
3 МГц	± 0,10 дБ	
4, 5, 6 и 8 МГц	± 0,30 дБ	
Опорный уровень		
Пределы установки: логарифмическая шкала линейная шкала Погрешность	от —170 до +30 дБм с шагог от 707 пВ до 7,07 В с разре 0 дБ	
Погрешность шкалы экрана при её	- 11	
Переключение между линейной и логарифмической шкалой	0 дБ	
Переключение масштаба логарифмической шкалы (дБ/дел)	0 дБ	
Верность воспроизведения закона ц	лкалы <u>г</u>	
Для уровня на входном смесителе между минус 10 и минус 80 дБм	±0,10 дБ (суммарная)	±0,04 дБ (тип. значение)
Для уровня на входном смесителе ниже минус 80 дБм	±0,07 дБ	±0,02 дБ (тип. значение)
Детекторы графика		
Нормальный, пиковый, мгновенного значени усреднение напряжения	ия, отрицательного пика, усред	нение логарифмической мощности, усреднение СКЗ,
Предусилитель		
Диапазон частот ¹	опция РОЗ опция РОВ опция Р13 опция Р26 опция Р43 опция Р44 опция Р50	от 9 кГц до 3,6 ГГц от 9 кГц до 8,4 ГГц от 9 кГц до 13,5 ГГц от 9 кГц до 26,5 ГГц от 9 кГц до 43 ГГц от 9 кГц до 44 ГГц от 9 кГц до 50 ГГц
Коэффициент усиления	от 9 кГц до 3,6 ГГц от 3,6 до 26,5 ГГц от 26,5 до 50 ГГц	+20 дБ, номинально +35 дБ, номинально +40 дБ, номинально

^{1.} Ниже 100 кГц для частотной характеристики предусмотрено только значение 95-го процентиля (приблизительно 2 д).

Гарантированные характеристики динамического диапазона

Уровень компрессии усиления на 1 д	дБ (два тона)	Макс. мощность на вход	е смесителя					
	(Полоса пропускания 1 кГц, разнос по частоте между тонами 100 кГц, от 20 до 30 °C)							
	от 20 до 40 МГц	—3 дБм	0 дБм (тип. значение)					
	от 40 до 200 МГц	+1 дБм	+3 дБм (тип. значение)					
	от 200 МГц до 3,6 ГГц	+3 дБм	+5 дБм (тип. значение)					
	от 3,6 до 16 ГГц	+1 дБм	+4 дБм (тип. значение)					
	от 16 до 26,5 ГГц	—1 дБм	+2 дБм (тип. значение)					
	от 26,5 до 50 ГГц		0 дБм, номинально					
Предусилитель включён	от 10 МГц до 3,6 ГГц		—14 дБм, номинально					
(опции РОЗ, РО8, Р13, Р26, Р43, Р44 и Р50)	от 3,6 до 26,5 ГГц							
	Разнос по частоте между	тонами от 100 кГц до 20 МГц	—28 дБм, номинально					
	Разнос по частоте между	тонами > 70 МГц						
	опция диапазона часто	τ ≤ 526	—10 дБм, номинально					
	опция диапазона часто	т > 526	—20 дБм, номинально					
	от 26,5 до 50 ГГц		—30 дБм, номинально					
Средний уровень собственных шумо	В							
(Вход нагружен, детектор мгновенного или с	реднего значения, тип усредн	нения логарифмический, ослабле	ние входного аттенюатора 0 дБ,					
усиление ПЧ = высокое, от 20 до 30 °C)	F-11	, , , , , , , , , , , , , , , , , , , ,						
Радиочастотный/миллиметровый диапазон		Обычный тракт ¹ /включён тракт	Обычный тракт ¹ /включён тракт					
(опции 503, 508, 513, 526)		с низким уровнем шумов ²	с низким уровнем шумов ²					
Предусилитель выключен	от 3 Гц до 9 кГц		—100 дБм (тип. знач.)/неприменимо					
party and a second a second and	от 9 до 100 кГц	—146 дБм/неприменимо	—152 дБм (тип. знач.)/неприменимо					
	от 100 кГц до 1 МГц	—150 дБм/неприменимо	—156 дБм (тип. знач.)/неприменимо					
	от 1 до 10 МГц	—155 дБм/неприменимo	–158 дБм (тип. знач.)/неприменимо					
	от 10 МГц до 1,2 ГГц	—155 дБм/неприменимо	—157 дБм (тип. знач.)/неприменимо					
	от 1,2 до 2,1 ГГц	—153 дБм/неприменимо	—155 дБм (тип. знач.)/неприменимо					
	от 2,1 до 3,0 ГГц	—152 дБм/неприменимо	-154 дБм (тип. знач.)/неприменимо					
	от 3,0 до 3,6 ГГц	—151 дБм/неприменимо	-153 дБм (тип. знач.)/неприменимо					
	от 3,5 до 4,2 ГГц	—147 дБм/—153 дБм	—150 дБм/—156 дБм (тип. значение)					
	от 4,2 до 8,4 ГГц	—150 дБм/—155 дБм	—152 дБм/—157 дБм (тип. значение)					
	от 8,3 до 13,6 ГГц	—149 дБм/—155 дБм	—151 дБм/—157 дБм (тип. значение)					
	от 13,6 до 16,9 ГГц	—145 дБм/—152 дБм	—147 дБм/—155 дБм (тип. значение)					
	от 16,9 до 20,0 ГГц	—143 дБм/—151 дБм	—145 дБм/—153 дБм (тип. значение)					
	от 20,0 до 26,5 ГГц	—137 дБм/—150 дБм	—140 дБм/—152 дБм (тип. значение)					
Предусилитель включён	от 100 до 200 кГц	—157 дБм/неприменимо	—160 дБм (тип. знач.)/неприменимо					
опции РОЗ, РОВ, Р13, Р26	от 200 до 500 кГц	—160 дБм/неприменимо	-163 дБм (тип. знач.)/неприменимо					
	от 0,5 до 1 МГц	—164 дБм/неприменимо	—166 дБм (тип. знач.)/неприменимо					
опции Р03, Р08, Р13, Р26	от 1 до 10 МГц	—164 дБм/неприменимо	—167 дБм (тип. знач.)/неприменимо					
опции РОЗ, РО8, Р13, Р26	от 10 МГц до 2,1 ГГц	—165 дБм/неприменимо	—166 дБм (тип. знач.)/неприменимо					
опции РОЗ, РО8, Р13, Р26	от 2,1 до 3,6 ГГц	—163 дБм/неприменимо	—164 дБм (тип. знач.)/неприменимо					
опции Р08, Р13, Р26 ³	от 3,6 до 8,4 ГГц	—164 дБм/неприменимо	—166 дБм (тип. знач.)/неприменимо					
опции Р13, Р26 ³	от 8,4 до 13,6 ГГц	—163 дБм/неприменимо	—165 дБм (тип. знач.)/неприменимо					
опция Р26 ³	от 13,6 до 16,9 ГГц	—161 дБм/неприменимо	—162 дБм (тип. знач.)/неприменимо					
опция Р26 ³	от 16,9 до 20,0 ГГц	—159 дБм/неприменимо	—161 дБм (тип. знач.)/неприменимо					
опция Р26 ³	от 20,0 до 26,5 ГГц	—155 дБм/неприменимо	—157 дБм (тип. знач.)/неприменимо					

^{1.} Memod NFE (Noise Floor Extension - понижение уровня собственных шумов) выключен ("Off").

^{2.} Тракт с низким уровнем шумов требует заказа опции LNP.

^{3.} На более высоких полосах частот (выше 3,6 ГГц) включение предусилителя ("On") заменяет собой включение тракта с низким уровнем шума ("LNP enabled").

Рация регользов / прод. усилитель выспочен полоса () ≥ 20 МГц Полога () > 20 МГц Полога	Средний уровень собственных шумов	в режиме NF	E		Улучшения	я (95-й проце	ентиль)
Полоса 0, 1>20 МГц Полоса 1 Полоса 2 Полоса 3 Полоса 4 Прагрименном заячаей полоса 1 Прагрименном заячаей полоса 1 Прагрименном 1 БузБ ГГц Полоса 3 Прагрименном 1 БузБ ГГц Полоса 4 Грагрименном 1 БузБ ГГц Полоса 3 Прагрименном 1 Пра	Радиочастотный/миллиметровый диапазон				Пред-	Пред-	Тракт с низким
Попоса 2 Попоса 3 Попоса 3 Попоса 3 Попоса 3 Попоса 3 Попоса 3 Попоса 4 Премпра аффективных значений произражного составных шумов Частов, от 20 до 30 °С до 30 °С до 40 °С до 5 лдб 7 дб 6 7 дб 7 дб	(опции РОЗ, РО8, Р13, Р26)				усилитель	усилитель	уровнем шумов
Полоса 2 Полоса 3 Полоса 3 Полоса 3 Полоса 3 Полоса 4 Примеры эффективных экснений среднего уразвен събственных значений събственных значения за събственных значений събственных значения за събственных значений събственных значений събственных значений събственных значений събственных значений събственных значения за събственных значений събственных значения за събственных значений събственных значения значений събственных значений събственных значений събственных значений събственных за събственных значений събственных значе					выключен	включен	включен ^{2, 3}
Полоса 2 Полоса 3 Полоса 3 Полоса 3 Полоса 3 Полоса 4 Примеры эффективных экснений среднего уразвен събственных значений събственных значения за събственных значений събственных значения за събственных значений събственных значений събственных значений събственных значений събственных значений събственных значения за събственных значений събственных значения за събственных значений събственных значения значений събственных значений събственных значений събственных значений събственных за събственных значений събственных значе	Полоса 0, f > 20 МГц				10 дБ	9 дБ	неприменимо
Попоса 2 Попоса 3 Попоса 4 Пред- примеры аффексивных значений преднего уровие обственных шумоги настоя 17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- урожитель выстичены преднего провен (17 (д. 56 г. 7 д. 6 Пред- преднего преднего преднего преднего преднего преднего преднего преднего пр							•
Полоса 3 Примеры эффективных значений ределия огрован собственных значений ределия огрован должных значений ределия значений ределия должных значений ределия значений ределия должных значений ределительных значений ределите	Полоса 2						
Полоса 4 Промеры арбаристичных загичений среднего уровия собственных шумов высокогом усизитель выслючен полоса (1 (1,8 Птц) — 162 дбм — 172 дбм — 169 дбм — 16	Полоса 3						
удовране обствением шумов в мактолен высточен и удовением уровением шумов в мактолен высточен и удовением шумов в мактолен и	Полоса 4						
Частов, от 20 до 30 °C середина полосы 1 (8,95 Ггц) Середина полосы 2 (10,55 Ггц) Середина полосы 2 (10,55 Ггц) Середина полосы 3 (15,35 Ггц) Середина полосы 4 (21,75 Ггц) Предусилитель выключен Опшия 543, 544, 550) Опредусилитель выключен Опшия 543, 544, 550) Опредусилитель выключен Опшия 543, 544, 550 Опредусилитель выключен Опшия 643, 544, 550 Опредусилитель выключен Опшия 643, 647, 647, 647, 647, 647, 647, 647, 647		Пред-	Пред-				
Середина полосы 2 (13,95 Птц) Середина полосы 3 (16,35 Птц) Середина полосы 3 (16,35 Птц) Середина полосы 3 (16,35 Птц) —157 дБм —170 дБм —162 дБм —163 дБм —162 дБм —163 дБм —162 дБм —163 дБм —163 дБм —163 дБм —163 дБм —164 дБм —165 дБм —165 дБм —166 дБ		усилитель	усилитель				
Середина полосы 3 (15.55 Птц) Середина полосы 3 (15.3 Птц) Середина полосы 3 (15.3 Птц) Середина полосы 4 (21.75 Птц) Предусилитель выключен Опции 543, 544, 550) Предусилитель выключен От 3 Гц до 9 иГц От 10 ИПц до 1 ДГПц От 2 до 2 ПТц От 2 до 2 ПТц От 2 до 3 ПТц От 3 до 3 ПТц От 3 до 3 ПТц От 3 до 3 ДПТц От 4 до 4 ДПТц От 4 до 5 ДПТц От 4 до 4 ДП	Частота, от 20 до 30 °C	выключен	включен	шумов включен ^{2, 3}			
Середина полосы 2 (10,56 ГГц) —157 дБм —167 дБм —168 дБм —168 дБм —158 дБм —169 дБм —168 дБм —158 дБм —169 дБм —158 дБм —169 дБм —158 дБм —169 дБм —158 дБм —169 дБм —169 дБм —158 дБм —169 дБм —158 дБм —169 дБм —158 дБм —169 дБм —169 дБм —158 дБм —169 дБм —160 дБм <th< td=""><td>Середина полосы 0 (1,8 ГГц)</td><td>—162 дБм</td><td>—172 дБм</td><td>неприменимо</td><td></td><td></td><td></td></th<>	Середина полосы 0 (1,8 ГГц)	—162 дБм	—172 дБм	неприменимо			
Середина попосы 3 (15.3 Пц) −152 дБм −162 дБм −152 дБм −155 дБм Миллиметровый двалазон (опцив Б43, 644, 560) от 3 Гц до 9 кГц с нажим уровены шумов 2 Обычный тракт / включен тракт оснажим уровены шумов 2 с нажим уровены шумов 2 с наж	Середина полосы 1 (5,95 ГГц)	—158 дБм	—172 дБм	—160 дБм			
Середина полосы 4 (21.75 ГГц) — 145 дБм — 162 дБм — 165 дБм м Обычный тракт / включен тракт (опции 543, 544, 550) — 17 3 Гц до 9 КГц от 100 КГц до 1 МГц от 1 до 10 КГц до 1 МГц от 1 до 10 КГц до 1 МГц от 1 до 10 КГц до 1 МГц от 1 до 12 ГГц от 22,1 ГГц от 22,1 ГГц от 33 до 3.6 ГГц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 2.5 до 5.6 ГГц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 3.5 до 3.6 ГГц от	Середина полосы 2 (10,95 ГГц)	—157 дБм	—170 дБм	—161 дБм			
Середуна полосы 4 (21,76 Гц) — 145 дБм — 162 дБм (опции 543, 544, 560) Обычный тракт / включен тракт (опции 543, 544, 560) Обычный тракт / включен тракт (опции 543, 544, 560) Обычный тракт / включен црхов 2 с низким уровнем шумов 2 с низким уровнем шумов 2 от 100 и до 1 0 и Дц до 1 и	Середина полосы 3 (15,3 ГГц)	—152 дБм	—166 дБм	—158 дБм			
Милиметровый диапазон (опции 543, 544, 550) Тредусилитель выключен (опции 543, 544, 550) то 3 Гц до 9 кГц от 9 до 100 кГц от 100 к							
Предусилитель выключен от 3 Гидо 9 Кгц от 9 до 100 кГц от 100 Кгц до 1 МГц от 100 Кгц до 1 МГц от 10 МГц до 12 ГГц от 10 МГц до 12 ГГц от 10 МГц до 12 ГГц от 12 до 2,1 ГГц от 3,2 до 3,6 ГГц от 3,2 до 3,6 ГГц от 4,2 до 6,6 ГГц от 4,2 до 6,6 ГГц от 6,6 до 8,4 ГГц от 13,5 до 14 ГГц от 14,2 до 17 ГГц о			··	Обычный тракт ¹ /вн	ключён тракт	Обычный трак	т1/включён тракт
от 9 до 100 кГц от 100 кГц до 1 МГц от 100 кГц до 1 МГц от 10 кГц до 12 ГГц от 12 до 2 1 ГГц от 12 до 2 1 ГГц от 12 до 2 1 ГГц от 3.2 до 3 кГГц от 3.5 до 4 2 ГГц от 4.2 до 6 6 ГГц от 10 кГц от 10 до 3 кГГц от 10 до 3 кГГц от 10 до 3 кГГц от 10 до 6 кГгц от 10 до 7 кГгц от 10 д				с низким уровнем	шумов ²		
от 100 кгг до 1 Мгц от 1 до 10 Мгц от 1 до 10 Мгц от 1 до 10 Мгц от 12 до 2.1 Ггц от 10 Мгц до 12 Ггц от 125 дБм/неприменимо от 12 до 2.1 Ггц от 125 дБм/неприменимо от 2.1 до 3.0 Ггц от 2.1 до 3.0 Ггц от 3.0 до 3.6 Ггц от 3.0 до 4.2 Ггц от 4.2 до 6.6 Ггц от 3.5 до 4.2 Ггц от 6.6 до 8.4 Ггц от 6.6 до 8.4 Ггц от 13.5 до 14 Ггц от 14 до 17 Ггц от 22.5 Ггц от 22.5 Ггц от 26.5 Ггц от 26.4 до 3.6 Ггц от 3.3 до 3.3 Ггц от 3.3 до 3.3 Ггц от 3.3 до 3.3 Ггц от 4.0 до 4.6 Ггц от 4.0 до 5.0 Ггц от 4.0 до 4.6 Ггц от 4.0 до 5.0 Ггц от 4.0 до 4.6 Ггц от 4.0 до 5.0 Ггц от 4.0 до 5.0 Ггц от 4.0 до 4.6 Ггц от 4.0 до 5.0 Ггц	Предусилитель выключен						
от 1, до 10 МГц от 10 МГц от 15 дБм/неприменимо от 1, до 2, ТГП от 12, до 2, ТГП от 12, до 2, ТГП от 12, до 3, до 1, до 3, до 1, до 3, до							
от 1.0 МГц до 1.2 ГГц — 155 дБм/неприменимо от 1.2 до 2.1 ГГц от 1.5 д 0.3 ЛГц — 153 дБм/неприменимо от 3.0 до 3.6 ГГц — 154 дБм (тип. знач.)/неприменим от 3.0 до 3.6 ГГц — 154 дБм/неприменимо от 3.5 до 4.2 ГГц — 143 дБм/—150 дБм — 153 дБм (тип. знач.)/неприменим от 3.5 до 4.2 ГГц — 144 дБм/—152 дБм — 147 дБм — 154 дБм (тип. знач.)/неприменим от 3.5 до 4.2 ГГц — 144 дБм/—152 дБм — 147 дБм — 154 дБм (тип. знач.)/неприменим от 3.5 до 3.6 ГГц — 147 дБм/—153 дБм — 148 дБм/—155 дБм (тип. значений от 1.3 5 до 1.4 ГГц — 147 дБм/—153 дБм — 149 дБм/—155 дБм (тип. значений от 1.3 5 до 1.4 ГГц — 145 дБм/—151 дБм — 149 дБм/—152 дБм (тип. значений от 1.3 5 до 1.4 ГГц — 145 дБм/—151 дБм — 146 дБм/—152 дБм (тип. значений от 1.3 5 до 1.4 ГГц — 145 дБм/—140 дБм — 149 дБм/—152 дБм (тип. значений от 1.3 5 до 1.4 ГГц — 145 дБм/—140 дБм — 149 дБм/—152 дБм (тип. значений от 1.3 5 дбм/—140 дБм — 146 дБм/—150 дБм (тип. значений от 2.2 5 до 2.6 5 ГГц — 139 дБм/—146 дБм — 146 дБм/—150 дБм (тип. значений от 3.3 д дбм/—140 дБм — 142 дБм/—149 дБм (тип. значений от 3.3 д дбм/—140 дБм — 142 дБм/—145 дБм (тип. значений от 4.6 до 4.9 ГГц — 130 дБм/—140 дБм — 133 дБм/—145 дБм (тип. значений от 4.6 до 4.9 ГГц — 130 дБм/—140 дБм — 133 дБм/—145 дБм (тип. значений от 4.6 до 4.9 ГГц — 130 дБм/—133 дБм/—145 дБм (тип. значений от 1.3 дБм/—145 дБм (тип. знач.)/неприменим от 1.6 дБм/—144 дБм (тип. знач.)/неприменим от 1.6 дБм/—144 дБм (тип. знач.)/неприменим от 1.6 дБм/—144 дБм (тип. знач.)/неприменим от 1.6 дБм (тип. знач.)/неприменим от 1.6 дБм/—144 дБм (тип. знач.)/неприменим		от 100 кГц до) 1 МГц				
от 1.2 до 2.1 Ггц от 2.1 ггц от 2.1 ггц от 2.2 до 3.6 Ггц от 3.0 до 3.6 Ггц от 3.0 до 3.6 Ггц от 3.0 до 3.6 Ггц от 3.5 до 4.2 Ггц от 4.2 до 6.6 Ггц от 4.2 до 6.6 Ггц от 6.6 до 8.4 Ггц от 6.6 до 8.4 Ггц от 6.6 до 8.4 Ггц от 3.5 до 4.2 Ггц от 3.5 до 4.2 Ггц от 6.6 до 8.4 Ггц от 3.5 до 1.4 Ггц от 7.2 до 3.0 1.4 Ггц от 1.4 до 2.0 до 1.4 Ггц от 1.4 до 2.2 Бг и от 1.4 до 3.3 до 3.7 Ггц от 3.3 до 4.0 Ггц от 3.3 до 4.0 Ггц от 3.3 до 4.0 Ггц от 4.2 до 2.2 Бг и от 3.3 до 4.0 Ггц от 4.2 до 5.0 Ггц от 4.2 до 4.0 Ггц от 4.2 до 4.2 Бр и от 3.3 до 4.0 Ггц от 4.2 до 4.2 Бр и от 3.3 до 4.0 Ггц от 4.2 до 5.0 Ггц от 4.2 до 5.0 Ггц от 4.2 до 4.2 Бр и ггд от 4.2 до 5.0 Ггц от 4.2 до 4.2 Бр и ггд от 4.2 до 4.2 Бр и ггд от 4.2 до 5.0 Ггц от 4.2 до 6.0 Ггц от 4.2 до 6.0		от 1 до 10 М	Гц	—155 дБм/непримо	ОМИН	—158 дБм (тиг	і. знач.)/неприменим
от 2.1 до 3.0 ГГц от 3.0 гСц от 3.0 гСц от 3.0 гСц от 3.0 го 3.0 гСц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 4.2 до 6.6 ГГц от 4.2 до 6.6 ГГц от 6.6 до 8.4 ГГц от 8.2 до 13.6 ГГц от 1.47 дБм/—152 дБм — 143 дБм/—155 дБм (тип. знач.)/неприменим от 3.5 до 13.6 ГГц от 1.47 дБм/—156 дБм — 149 дБм/—156 дБм (тип. знач.)/неприменим от 1.3.5 до 1.4 ГГц от 1.47 дБм/—156 дБм — 149 дБм/—156 дБм (тип. значений от 1.3.5 до 1.4 ГГц от 1.4 д дБм/—150 дБм — 149 дБм/—156 дБм (тип. значений от 1.4 д дБм/—150 дБм — 149 дБм/—156 дБм (тип. значений от 1.4 д дБм/—150 дБм — 149 дБм/—156 дБм (тип. значений от 1.4 д дБм/—150 дБм — 149 дБм/—156 дБм (тип. значений от 1.4 д дБм/—150 дБм — 149 дБм/—152 дБм (тип. значений от 2.5 д 2.5 ГГц — 1.41 дБм/—149 дБм — 148 дБм/—152 дБм (тип. значений от 2.5 д 2.5 ГГц — 1.41 дБм/—146 дБм — 148 дБм/—152 дБм (тип. значений от 2.5 д 2.5 ГГц — 1.43 дБм/—140 дБм — 148 дБм/—152 дБм (тип. значений от 3.9 д 2.0 3.7 ГГц — 1.3 дБм/—140 дБм — 1.33 дБм/—147 дБм (тип. значений от 3.9 д 2.0 3.7 ГГц — 1.3 дБм/—140 дБм — 1.33 дБм/—147 дБм (тип. значений от 4.0 д 2.4 ГГц — 1.3 дБм/—140 дБм — 1.33 дБм/—142 дБм (тип. значений от 4.0 д 2.4 ГГц — 1.4 дБм/—138 дБм — 1.33 дБм/—142 дБм (тип. значы)/неприменим от 1.0 дБм/—140 дБм — 1.33 дБм/—142 дБм (тип. значы)/неприменим от 1.0 дБм/—140 дБм — 1.33 дБм/—142 дБм (тип. значы)/неприменим от 1.0 дБм/ неприменим — 1.65 дБм (тип. значы)/неприменим — 1.65 дБм/неприменим — 1.65 дБм (тип. значы)/неприменим — 1.65 дБм/неп		от 10 МГц до	1,2 ГГц	—155 дБм/непримо	ОМИН	—157 дБм (тиг	і. знач.)/неприменим
от 3.0 до 3.6 ГГц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 4.3 дом 7-150 дбм (тил. знач.)/неприменим от 4.2 до 6.6 ГГц от 6.6 до 8.4 ГГц от 8.3 до 13.6 ГГц от 14.7 дбм/-152 дбм от 8.3 до 13.6 ГГц от 14.7 дбм/-152 дбм от 14.2 дбм/-152 дбм (тил. значений от 13.5 до 14 ГГц от 14.2 дбм/-153 дбм от 14.2 дбм/-152 дбм (тил. значений от 22.5 ГГц от 14.2 дбм/-151 дбм от 14.2 дбм/-152 дбм (тил. значений от 22.5 гбм от 22.5 ГГц от 14.2 дбм/-161 дбм (тил. значений от 22.5 гбм от 3.3 д а.4 ГГц от 33.2 д а.4 ГГц от 34.2 д а.4		от 1,2 до 2,1	ГГц	—153 дБм/неприм	ЭНИМО	—155 дБм (тиг	і. знач.)/неприменим
от 3.0 до 3.6 ГГц от 3.5 до 4.2 ГГц от 3.5 до 4.2 ГГц от 4.3 дом 7-150 дбм (тил. знач.)/неприменим от 4.2 до 6.6 ГГц от 6.6 до 8.4 ГГц от 8.3 до 13.6 ГГц от 14.7 дбм/-152 дбм от 8.3 до 13.6 ГГц от 14.7 дбм/-152 дбм от 14.2 дбм/-152 дбм (тил. значений от 13.5 до 14 ГГц от 14.2 дбм/-153 дбм от 14.2 дбм/-152 дбм (тил. значений от 22.5 ГГц от 14.2 дбм/-151 дбм от 14.2 дбм/-152 дбм (тил. значений от 22.5 гбм от 22.5 ГГц от 14.2 дбм/-161 дбм (тил. значений от 22.5 гбм от 3.3 д а.4 ГГц от 33.2 д а.4 ГГц от 34.2 д а.4		от 2,1 до 3,0	ГГц	—152 дБм/неприме	ЭНИМО	—154 дБм (тиг	і. знач.)/неприменим
от 4.2 до 6.6 ГГц от 6.6 до 8.4 ГГц от 6.6 до 8.4 ГГц от 6.6 до 8.4 ГГц от 6.8 до 8.4 ГГц от 8.3 до 13.6 ГГц от 13.5 до 14 ГГц от 14 до 17 ГГц от 12.5 до 2.5 ГГц от 12.5 до 2.6 5 ГГц от 22.5 до 26.5 ГГц от 26.4 до 34 ГГц от 33.9 до 37 ГГц от 37 до 40 ГГц от 40 до 46 ГГц от 40 до 46 ГГц от 40 до 46 ГГц от 10 МГц до 2.1 ГГц от 10 МГц от 1 до 10 МГц от 10 До 20 ГГц от 10 до 20 Сб.5 ГГц от 10 До		от 3,0 до 3,6	ГГц	—151 дБм/неприме	ЭНИМО		
от 4.2 до 6.6 ГГц от 6.6 до 8.4 ГГц от 6.6 до 8.4 ГГц от 6.6 до 8.4 ГГц от 6.8 до 8.4 ГГц от 8.3 до 13.6 ГГц от 13.5 до 14 ГГц от 14 до 17 ГГц от 12.5 до 2.5 ГГц от 12.5 до 2.6 5 ГГц от 22.5 до 26.5 ГГц от 26.4 до 34 ГГц от 33.9 до 37 ГГц от 37 до 40 ГГц от 40 до 46 ГГц от 40 до 46 ГГц от 40 до 46 ГГц от 10 МГц до 2.1 ГГц от 10 МГц от 1 до 10 МГц от 10 До 20 ГГц от 10 до 20 Сб.5 ГГц от 10 До		от 3,5 до 4,2	ГГц	—143 дБм/—150 дE	oM	—153 дБм (тиг	ı. знач.)/неприменим
от 6,6 до 8,4 ГГц от 8,3 до 13,6 ГГц от 13,7 до 14,6 ГГц от 13,3 до 13,6 ГГц от 13,5 до 14 ГГц от 14,7 до 24,5 ГГц от 14,7 до 25,5 ГГц от 14,7 до 27,5 ГГц от 12,7 до 22,5 ГГц от 12,7 до 22,5 ГГц от 26,4 до 34 ГГц от 33,9 до 37 ГГц от 33,9 до 37 ГГц от 34,7 до 40 ГГц от 46,7 до 49 ГГц от 46,7 до 49 ГГц от 49,7 до 40 ГГц от 49,7 до 50 ГГц от 57,7 до 40 ГГц от 57,							
от 8,3 до 13,6 ГГц от 147 дБм/—153 дБм от 13,5 до 14 ГГц от 14,0 дБм/—152 дБм (тип. значени от 13,5 до 14 ГГц от 14,0 дБм/—152 дБм (тип. значени от 17,0 о 22,5 ГГц от 17,0 о 22,5 ГГц от 12,5 дБм/—149 дБм/—149 дБм —148 дБм/—152 дБм (тип. значени от 22,5 до 26,5 ГГц от 33,9 до 37 ГГц от 33,9 до 37 ГГц от 37,0 40 ГГц от 37,0 40 ГГц от 40,0 46 ГГц от 50,0 дБм/—149 дБм/—140 —154 дБм (тип. знач)/неприменим опции P44, P50 3 от 43 д0 44 ГГц —149 дБм/—149 дБм/				—147 дБм/—154 дE	oM		
от 13,5 до 14 ГГц		от 8,3 до 13,6	3 ГГц	—147 дБм/—153 дE	OM		
от 14 до 17 ГГц				—143 дБм/—150 дE	OM		
от 17 до 22,5 ГГц от 22,5 ГГц от 22,5 ГГц от 22,5 до 26,5 ГГц от 22,5 до 26,5 ГГц от 26,4 до 34 ГГц от 33,9 до 37 ГГц от 33,9 до 37 ГГц от 34, ДБМ/—140 дБМ от 33,9 до 37 ГГц от 40 до 46 ГГц от 40 до 47 ГГц от 40 до 46 ГГц от 40 до 47 ГГц						—146 дБм/—15	53 дБм (тип. значение
от 22,5 до 26,5 ГГц от 26,4 до 34 ГГц от 26,4 до 34 ГГц от 33,9 до 37 ГГц от 37,0 40 ГГц от 37,0 40 ГГц от 40,0 46 ГГц от 49,0 50 ГГц от 49,0 50 ГГц от 49,0 50 ГГц от 100,0 200 кГц от 100,0 10,0 КГц от 100,0 10,0 КГц от 100,0 КГц от		от 17 до 22.5	ГГц	—141 дБм/—149 дE	M		
от 26,4 до 34 ГГц от 33,9 до 37 ГГц от 33,9 до 37 ГГц от 34,0 дьм/—140 дьм — 132 дьм/—147 дьм (тип. значени от 37 до 40 ГГц от 40 до 46 ГГц — 130 дьм/—140 дьм — 135 дьм/—145 дьм (тип. значени от 40 до 46 ГГц — 130 дьм/—140 дьм — 135 дьм/—142 дьм (тип. значени от 49 до 50 ГГц — 128 дьм/—138 дьм — 135 дьм/—142 дьм (тип. значени от 49 до 50 ГГц — 128 дьм/—138 дьм — 133 дьм/—142 дьм (тип. значени от 49 до 50 ГГц — 128 дьм/—138 дьм — 133 дьм/—142 дьм (тип. значени от 49 до 50 ГГц — 128 дьм/—138 дьм — 133 дьм/—142 дьм (тип. значени от 200 до 500 кГц — 160 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 0,5 до 1 МГц от 1 до 10 МГц от 1 до 10 МГц — 164 дьм/неприменимо — 165 дьм (тип. знач.)/неприменим от 1 до 10 МГц до 2,1 ГГц — 164 дьм/неприменимо — 166 дьм (тип. знач.)/неприменим от 2,1 до 3,6 ГГц — 161 дьм/неприменимо — 166 дьм (тип. знач.)/неприменим от 2,1 до 3,6 ГГц — 161 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 1,3,5 до 17 ГГц — 161 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 1,3,5 до 17 ГГц — 161 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 17 до 20 ГГц — 161 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 17 до 20 ГГц — 161 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 20 до 26,5 ГГц — 158 дьм/неприменимо — 163 дьм (тип. знач.)/неприменим от 30 до 34 ГГц — 155 дьм/неприменимо — 156 дьм (тип. знач.)/неприменим от 30 до 34 ГГц — 155 дьм/неприменимо — 156 дьм (тип. знач.)/неприменим от 30 до 34 ГГц — 152 дьм/неприменимо — 154 дьм (тип. знач.)/неприменим от 40 до 43 ГГц — 152 дьм/неприменим — 156 дьм (тип. знач.)/неприменим — 154 дьм				—139 дБм/—146 дE	OM		
от 33,9 до 37 ГГц от 37 до 40 ГГц от 37 до 40 ГГц от 40 до 46 ГГц от 49 до 50 ГГц от 49 до 50 ГГц от 130 дБм/—140 дБм от 49 до 50 ГГц от 128 дБм/—142 дБм (тип. значени от 49 до 50 ГГц от 128 дБм/—133 дБм/—142 дБм (тип. значени от 49 до 50 ГГц от 100 до 200 кГц от 100 до 200 кГц от 1,5 д 50 м/еприменимо от 1,5 д 10 мГц от 1,5 д 10 мГнц от 1,5							
от 37 до 40 ГГц от 40 до 46 ГГц от 40 до 49 ГГц от 49 до 50 ГГц от 49 до 50 ГГц от 49 до 50 ГГц от 200 до 200 кГц от 0,5 до 1 МГц от 0,5 до 1 МГц от 1,0 до 500 кГц от 1,0 до 10 МГц от 1,0 до 1							
от 40 до 46 ГГц от 46 до 49 ГГц от 46 до 49 ГГц от 49 до 50 ГГц от 50 до 50							
от 46 до 49 ГГц							
от 49 до 50 ГГц — 128 дБм/—138 дБм — 133 дБм — 142 дБм (тип. значени от 100 до 200 кГц — 157 дБм/неприменим — 160 дБм (тип. знач.)/неприменим от 200 до 500 кГц — 160 дБм/неприменим — 163 дБм (тип. знач.)/неприменим от 1 до 10 МГц до 2,1 ГГц — 164 дБм/неприменим — 165 дБм (тип. знач.)/неприменим от 10 МГц до 2,1 ГГц — 164 дБм/неприменим — 166 дБм (тип. знач.)/неприменим от 2,1 до 3,6 ГГц — 163 дБм/неприменим — 166 дБм (тип. знач.)/неприменим — 163 дБм (тип. знач.)/неприменим — 153 дБм/неприменим — 153 дБм/неприменим — 154 дБм (тип. знач.)/неприменим — 155 дБм/неприменим — 155 дБм/неприменим — 156 дБм (тип. знач.)/неприменим — 157 дБм (тип. знач.)/неприменим — 153 дБм/неприменим — 154 дБм (тип. знач.)/неприменим — 154 дБм (тип. знач.)/непримени							
Предусилитель включён от 100 до 200 кГц —157 дБм/неприменимо —160 дБм (тип. знач.)/неприменим от 200 до 500 кГц —160 дБм/неприменимо —163 дБм (тип. знач.)/неприменим от 1 до 10 МГц —164 дБм/неприменимо —163 дБм (тип. знач.)/неприменим —167 дБм (тип. знач.)/неприменим —167 дБм (тип. знач.)/неприменим —164 дБм/неприменимо —164 дБм (тип. знач.)/неприменим —163 дБм (тип. знач.)/неприменим —157 дБм (тип. знач.)/неприменим —158 дБ							
опции Р03, Р08, Р13, Р26, Р43, Р44, Р50 ³ от 200 до 500 кГц от 0,5 до 1 МГц от 1,62 дБм/неприменимо от 1,62 дБм/неприменимо от 1,62 дБм/неприменимо от 1,63 дБм (тип. знач.)/неприменимо от 2,1 до 3,6 ГГц от 2,1 ГГц от 2,1 до 3,6 ГГц от 2,1 до 3,6 ГГц от 3,5 до 8,4 ГГц от 1,63 дБм/неприменимо опции Р08, Р13, Р26, Р43, Р44, Р50 ³ от 3,5 до 8,4 ГГц от 1,61 дБм/неприменимо опции Р26, Р43, Р44, Р50 ³ от 3,5 до 17 ГГц от 1,61 дБм/неприменимо опции Р26, Р43, Р44, Р50 ³ от 1,63 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 20, 20 ГГц от 1,60 дБм/неприменимо от 20 до 26,5 ГГц от 2,64 до 30 ГГц от 3,9 до 37 ГГц от 4,0 до 43 ГГц от 4,0 до 44 ГГц от 4,0 до 46 ГГц от 4,0 до 46 ГГц от 4,0 до 46 ГГц от 4,0 до 5,0 дБм/неприменимо опции Р44, Р50 ³ от 44 до 46 ГГц от 4,4 до 46 ГГц от 6,4 дБм/неприменимо от 44 дБм/неп	Предусилитель включён		-				,
от 0,5 до 1 МГц от 1 до 10 МГц от 1 до 3,6 ГГц от 164 дБм/неприменимо от 2,1 до 3,6 ГГц от 3,5 до 8,4 ГГц от 2,1 до 3,6 ГГц от 3,5 до 8,4 ГГц от 3,5 до 13,6 ГГц от 1,5 до 17 ГГц				—160 дБм/непримо	ОМИН		
от 1 до 10 МГц до 2,1 ГГц — 164 дБм/неприменимо от 10 МГц до 2,1 ГГц — 164 дБм/неприменимо от 2,1 до 3,6 ГГц — 163 дБм/неприменимо — 164 дБм (тип. знач.)/неприменимо опции Р08, Р13, Р26, Р43, Р44, Р50 ³ от 3,5 до 8,4 ГГц — 161 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц — 161 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц — 161 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо от 17 до 20 ГГц — 160 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц — 158 дБм/неприменимо — 161 дБм (тип. знач.)/неприменимо от 20 до 30 д 34 ГГц — 157 дБм/неприменимо — 159 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц — 155 дБм/неприменимо — 158 дБм (тип. знач.)/неприменимо от 33,9 до 37 ГГц — 153 дБм/неприменимо — 157 дБм (тип. знач.)/неприменимо от 37 до 40 ГГц — 152 дБм/неприменимо — 156 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опции Р44, Р50 ³ от 43 до 44 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³				—162 дБм/непримо	ОМИНЕ	—165 дБм (тиг	ı. знач.)/неприменим
от 10 МГц до 2,1 ГГц —164 дБм/неприменимо —164 дБм (тип. знач.)/неприменимо от 2,1 до 3,6 ГГц —163 дБм/неприменимо —164 дБм (тип. знач.)/неприменимо опции Р08, Р13, Р26, Р43, Р44, Р50 ³ от 3,5 до 8,4 ГГц —161 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц —161 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 17 до 20 ГГц —160 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —157 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц —155 дБм/неприменимо —159 дБм (тип. знач.)/неприменимо от 33,9 до 37 ГГц —153 дБм/неприменимо —157 дБм (тип. знач.)/неприменимо от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 ³ от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (ти		от 1 до 10 М	1Гц	—164 дБм/непримо	Энимо	—167 дБм (тиг	ı. знач.)/неприменим
от 2,1 до 3,6 ГГц — 163 дБм/неприменимо — 164 дБм (тип. знач.)/неприменимо опции Р08, Р13, Р26, Р43, Р44, Р50 ³ от 3,5 до 8,4 ГГц — 161 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц — 161 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо от 17 до 20 ГГц — 160 дБм/неприменимо — 163 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц — 158 дБм/неприменимо — 161 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц — 157 дБм/неприменимо — 161 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц — 155 дБм/неприменимо — 159 дБм (тип. знач.)/неприменимо от 33,9 до 37 ГГц — 153 дБм/неприменимо — 157 дБм (тип. знач.)/неприменимо от 37 до 40 ГГц — 152 дБм/неприменимо — 156 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опции Р44, Р50 ³ от 43 до 44 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц — 149 дБм/неприменимо — 154 дБм (тип. знач.)/неприменимо — 154 дБм (тип. знач.)/непри		от 10 МГц до	о 2,1 ГГц	—164 дБм/неприм	ЭНИМО	—166 дБм (тиг	ı. знач.)/неприменим
опции Р08, Р13, Р26, Р43, Р44, Р50 ³ от 3,5 до 8,4 ГГц —161 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц —161 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 17 до 20 ГГц —160 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц —157 дБм/неприменимо —159 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц —153 дБм/неприменимо —158 дБм (тип. знач.)/неприменимо от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 ³ от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприм				—163 дБм/непримо	ОМИН	—164 дБм (тиг	ı. знач.)/неприменим
опции Р26, Р43, Р44, Р50 ³ от 8,3 до 13,6 ГГц —161 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 17 до 20 ГГц —160 дБм/неприменимо —163 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц —155 дБм/неприменимо от 30, 30, 34 ГГц —155 дБм/неприменимо от 33,9 до 37 ГГц —153 дБм/неприменимо от 37 до 40 ГГц —152 дБм/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 ³ от 44 дБм/неприменимо —154 дБм/неприменимо	опции Р08, Р13, Р26, Р43, Р44, Р50 ³			—161 дБм/неприм	ЭНИМО		
опции Р26, Р43, Р44, Р50 ³ от 13,5 до 17 ГГц —160 дБм/неприменимо от 17 до 20 ГГц —160 дБм/неприменимо —163 дБм (тип. знач.)/неприменим от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменим от 30 до 34 ГГц —157 дБм/неприменимо —159 дБм (тип. знач.)/неприменимо от 33,9 до 37 ГГц —153 дБм/неприменимо от 37 до 40 ГГц —152 дБм/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 44 до 46 ГГц				—161 дБм/непримо	ОМИН		
от 17 до 20 ГГц —160 дБм/неприменимо от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменим от 20 до 26,5 ГГц —157 дБм/неприменимо —159 дБм (тип. знач.)/неприменим от 30 до 34 ГГц —155 дБм/неприменимо —158 дБм (тип. знач.)/неприменим от 33,9 до 37 ГГц —153 дБм/неприменимо —157 дБм (тип. знач.)/неприменимо от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 3 от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 дБм (тип. знач.)/неприменимо опц	опции Р26, Р43, Р44, Р50 ³	от 13,5 до 17	7 ГГц	—161 дБм/непримо	Энимо		
от 20 до 26,5 ГГц —158 дБм/неприменимо —161 дБм (тип. знач.)/неприменим от 30 до 34 ГГц —155 дБм/неприменимо —159 дБм (тип. знач.)/неприменим от 33,9 до 37 ГГц —155 дБм/неприменимо —158 дБм (тип. знач.)/неприменим от 37,0 40 ГГц —152 дБм/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 3 от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3							
опции Р43, Р44, Р50 3 от 26,4 до 30 ГГц —157 дБм/неприменимо —159 дБм (тип. знач.)/неприменимо от 30 до 34 ГГц —155 дБм/неприменимо —158 дБм (тип. знач.)/неприменим от 33,9 до 37 ГГц —153 дБм/неприменимо —157 дБм (тип. знач.)/неприменим от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменим от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опции Р44, Р50 3 от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим							
от 30 до 34 ГГц —155 дБм/неприменимо от 33,9 до 37 ГГц —153 дБм/неприменимо от 33,9 до 37 ГГц —153 дБм/неприменимо —157 дБм (тип. знач.)/неприменим от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменим от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опции Р44, Р50 3 от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 3 от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим	опции Р43, Р44, Р50 ³						
от 33,9 до 37 ГГц —153 дБм/неприменимо —157 дБм (тип. знач.)/неприменим от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменим от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опции Р44, Р50 з от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опция Р50 з от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим		от 30 до 34 І	ГГц				, ,
от 37 до 40 ГГц —152 дБм/неприменимо —156 дБм (тип. знач.)/неприменим от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опции Р44, Р50 з от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опция Р50 з от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим							, ,
от 40 до 43 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опции Р44, Р50 з от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменимо опция Р50 з от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим							
опции Р44, Р50 з от 43 до 44 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим опция Р50 з от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим							
опция Р50 ³ от 44 до 46 ГГц —149 дБм/неприменимо —154 дБм (тип. знач.)/неприменим	опции Р44, Р50 ³						

^{1.} Memod NFE (Noise Floor Extension - понижение уровня собственных шумов) выключен ("Off").

^{2.} Тракт с низким уровнем шумов требует заказа опции LNP. 3. На более высоких полосах частот (выше 3,6 ГГц) включение предусилителя ("On") заменяет собой включение тракта с низким уровнем шума ("LNP enabled").

Средний уровень собственных шумо	ов в режиме N	FE		Улучшения	я (95-й проі	центиль)
Миллиметровый диапазон				Пред-	Пред-	Тракт с низким
(опции 543, 544, 550)				усилитель	усилитель	уровнем шумов
				выключен	включен	включен ^{1, 2}
Полоса 0, f > 20 МГц				10 дБ	9 дБ	неприменимо
Полоса 1				6 дБ	5 дБ	6 дБ
Полоса 2				8 дБ	8 дБ	8 дБ
Полоса 3				9 дБ	8 дБ	10 дБ
Полоса 4				7 дБ	6 дБ	8 дБ
Полоса 5				6 дБ	6 дБ	6 дБ
Полоса 6				6 дБ	5 дБ	7 дБ
Примеры эффективных значений	Пред-	Пред-	Тракт с низким			
среднего уровня собственных шумов	усилитель	усилитель	уровнем шумов			
Частота, от 20 до 30 °C	выключен	включен	включен ^{1, 2}			
Середина полосы 0 (1,8 ГГц)	—162 дБм	—172 дБм	неприменимо			
Середина полосы 1 (5,95 ГГц)	—151 дБм	—165 дБм	—158 дБм			
Середина полосы 2 (10,95 ГГц)	—152 дБм	—165 дБм	—158 дБм			
Середина полосы 3 (15,3 ГГц)	—152 дБм	—165 дБм	—158 дБм			
Середина полосы 4 (21,75 ГГц)	—149 дБм	—163 дБм	—155 дБм			
Середина полосы 5 (30,4 ГГц)	—144 дБм	—160 дБм	—151 дБм			
Середина полосы 6 (42,7 ГГц)	—139 дБм	—154 дБм	—147 дБм			

^{1.} Тракт с низким уровнем шумов требует заказа опции LNP. 2. На более высоких полосах частот (выше 3,6 ГГц) включение предусилителя ("On") заменяет собой включение тракта с низким уровнем шума ("LNP enabled").

Собственные комбинационные	помехи, зеркальные	отклики и паразитн	ые откли	КИ
Собственные комбинационные помехи (вход нагружен, ослабление 0 дБ)	от 200 кГц до 8,4 ГГц нулевой обзор, или БПФ	—100 дБм —100 дБм, номинальн	0	
	или другие частоты			
Зеркальные отклики	Частота настройки (f)	Частота возбуждения	Отклик	
(Уровень на смесителе -10 дБм)	от 10 МГц до 26,5 ГГц	f+45 МГц	—80 дБн	–118 дБн (тип. значение)
	от 10 МГц до 3,6 ГГц	f+10,245 МГц	—80 дБн	–112 дБн (тип. значение)
	от 10 МГц до 3,6 ГГц	f+645 МГц	–80 дБн	–101 дБн (тип. значение)
	от 3,5 до 13,6 ГГц	f+645 МГц	—78 дБн	—87 дБн (тип. значение)
	от 13,5 до 17,1 ГГц	f+645 МГц	—74 дБн	—84 дБн (тип. значение)
	от 17,0 до 22 ГГц	f+645 МГц	—70 дБн	—82 дБн (тип. значение)
	от 22 до 26,5 ГГц	f+645 МГц	–68 дБн	—79 дБн (тип. значение)
(Уровень на смесителе —30 дБм)	от 26,5 до 34,5 ГГц	f+645 МГц	—68 дБн	—84 дБн (тип. значение)
	от 34,4 до 44 ГГц	f+645 МГц	–57 дБн	—79 дБн (тип. значение)
	от 44 до 50 ГГц	f+645 МГц		—84 дБн (тип. значение)
	Уровень на смесителе	Отклик		
Частота несущей ≤ 26,5 ГГц				
РЧ составляющие первого порядка	—10 дБм			аразитное прохождение сигнала ПЧ и
(отстройка от несущей f ≥ 10 МГц)	40 5			смешения с частотой гетеродина
РЧ составл. более высоких порядков	—40 дБм	.		тклики более высоких порядков,
(отстройка от несущей f ≥ 10 МГц) Частота несущей > 26,5 ГГц		полученные в результ	ате смеше	НИЯ
частота несущеи > 20,5 гг ц РЧ составляющие первого порядка	—30 дБм	–90 дБн, номинально		
(отстройка от несущей f ≥ 10 МГц)	—50 дом	—эо дон, номинально		
РЧ составл. более высоких порядков	—30 дБм	—90 дБн, номинально		
(отстройка от несущей $f \ge 10 \text{ M}\Gamma_{\text{L}}$)	оо дым	оо дын, поминально		
Паразитные отклики, связанные	-68 дБн ² + 20 log(N ¹)			
с гетеродином (200 Гц ≤ отстройка	оо доп . 20 юд(14)			
от несущей < 10 МГц),				
уровень на смесителе —10 дБм				
Паразитные отклики, связанные		$-73 \text{ dBH } ^2 + 20 \log(N^1)$) (номинал	ьно)
с сетью питания			, ,	- 1

с сетью питания				
Гармонические искажения вто	рого порядка (точка г	пересечения второг	го порядка - SHI)	
	Частота	Уровень	Уровень	Точка пересечения
	источника	на смесителе	искажений ³	второго порядка (SHI) ³
Радиочастотный/миллиметровый	от 10 до 100 МГц	—15 дБм	–57 дБн/неприменимо	+42 дБм/неприменимо
диапазон (опции 503, 508, 513, 526)	от 0,1 до 1,8 ГГц	—15 дБм	–60 дБн/неприменимо	+45 дБм/неприменимо
	от 1,75 до 2,5 ГГц	—15 дБм	—77 дБн/—95 дБн	+62 дБм/+80 дБм
	от 2,5 до 4 ГГц	—15 дБм	–77 дБн/ – 101 дБн	+62 дБм/+86 дБм
	от 4 до 6,5 ГГц	—15 дБм	−77 дБн/−105 дБн	+62 дБм/+90 дБм
	от 6,5 до 10 ГГц	—15 дБм	−70 дБн/−105 дБн	+55 дБм/+90 дБм
	от 10 до 13,25 ГГц	—15 дБм	–62 дБн/–105 дБн	+47 дБм/+90 дБм
		Уровень	Уровень	Точка пересечения
		на предусилителе	искажений	второго порядка (SHI)
Предусилитель включён	от 10 МГц до 1,8 ГГц	—45 дБм	—78 дБн, номинально	+33 дБм, номинально
(опции РОЗ, РО8, Р13, Р26)	от 1,8 до 13,25 ГГц	—50 дБм	—60 дБн, номинально	+10 дБм, номинально
Миллиметровый диапазон	Частота	Уровень	Уровень	Точка пересечения
(опции 543, 544, 550)	источника	на смесителе	искажений ³	второго порядка (SHI) ³
	от 10 до 100 МГц	—15 дБм	–57 дБн/неприменимо	+42 дБм/неприменимо
	от 0,1 до 1,8 ГГц	—15 дБм	-60 дБн/неприменимо	+45 дБм/неприменимо
	от 1,8 до 2,5 ГГц	—15 дБм	—72 дБн/—95 дБн	+57 дБм/+80 дБм
	от 2,5 до 3 ГГц	—15 дБм	—72 дБн/—99 дБн	+57 дБм/+84 дБм
	от 3 до 5 ГГц	—15 дБм	—77 дБн/—99 дБн	+62 дБм/+84 дБм
	от 5 до 6,5 ГГц	—15 дБм	−77 дБн/−105 дБн	+62 дБм/+90 дБм
	от 6,5 до 10 ГГц	—15 дБм	−70 дБн/−105 дБн	+55 дБм/+90 дБм
	от 10 до 13,25 ГГц	—15 дБм	—62 дБн/—105 дБн	+47 дБм/+90 дБм
	от 13,25 до 25 ГГц	—15 дБм	—65 дБн/—105 дБн	+50 дБм/+90 дБм
Предусилитель включён (опции РОЗ,		Уровень	Уровень	Точка пересечения
P08, P13, P26, P43, P44, P50)		на предусилителе	искажений	второго порядка (SHI)
	от 10 МГц до 1,8 ГГц	—45 дБм		+33 дБм (ном.)/неприм.
	от 1,8 до 13,25 ГГц	—50 дБм		+10 дБм (ном.)/неприм.
	от 13,25 до 25 ГГц	—50 дБм	–50 дБн (ном.)/неприм.	0 дБм (ном.)/неприм.

^{1.} N - гармоника гетеродина. На странице 4 приведены соотношения между значениями N и диапазонами частот.

^{2.} Номинально— 40 дБс при воздействии мощных электромагнитных полей (0,38 Гс СКЗ) или вибраций (0,24 g СКЗ). 3. Обычный тракт/включён тракт с низким уровнем шума (требуется опция LNP)

Интермодуляционные искажен	ия третьего порядка ()	ΓΟΙ)						
1 14 1	(Два тона по —16 дБм на входном смесителе с разнесением тонов более 5-кратной ширины полосы предварительного фильтра ПЧ; от 20 до 30 °C)							
Дэх тола по то дэм на эходлом омо	отполо о растосоттот тот	TOI	Z. Iprilis Horizos. Ilpodasapinionis Horizo di Principa III II el 20 de 00 07					
	от 10 до 150 МГц	+13 дБм	+16 дБм (тип. значение)					
	от 150 до 600 МГц	+18 дБм	+21 дБм (тип. значение)					
	от 0,6 до 1,1 ГГц	+20 дБм	+22 дБм (тип. значение)					
	от 1,1 до 3,6 ГГц	+21 дБм	+23 дБм (тип. значение)					
	от 3,5 до 8,4 ГГц	+15 дБм	+22 дБм (тип. значение)					
	от 8,3 до 13,6 ГГц	+15 дБм	+23 дБм (тип. значение)					
	от 13,6 до 17 ГГц	+11 дБм	+27 дБм (тип. значение)					
	от 17 до 26,5 ГГц	+10 дБм	+17 дБм (тип. значение)					
	от 26,5 до 50 ГГц		+13 дБм (тип. значение)					
Предусилитель включён								
(опции РОЗ, РО8, Р13, Р26, Р43,								
P44, and P50)								
Два тона на входе предусилителя								
(два тона по —45 дБм)	от 10 до 500 МГц		+4 дБм, номинально					
(два тона по —45 дБм)	от 500 МГц до 3,6 ГГц	l	+4,5 дБм, номинально					
(два тона по -50 дБм)	от 3,6 до 26,5 ГГц		—15 дБм, номинально					

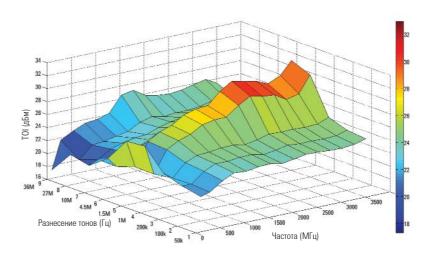
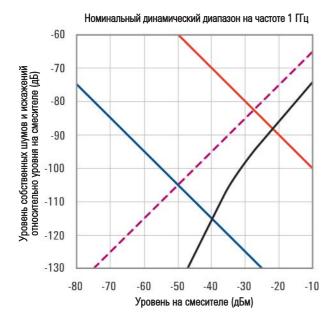
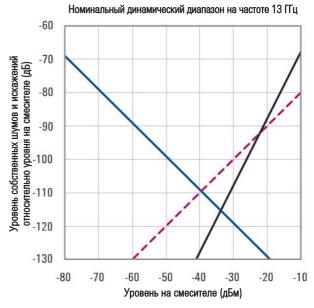
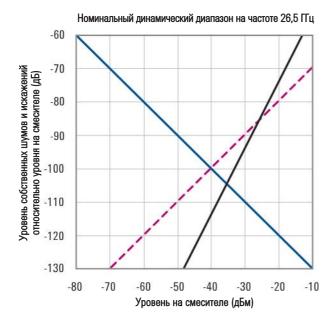
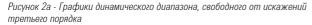






Рисунок 1 - Зависимость характеристик TOI от частоты и разнесения тонов (номинальные величины)

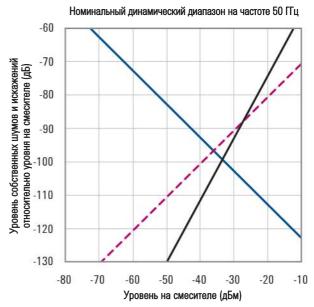
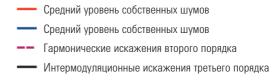



Рисунок 2b - Графики динамического диапазона, свободного от искажений третьего порядка

Фазовый шум	Отстройка от несущей	Нормированное значение	Типовое значение
Фазовый шум вблизи несущей	10 Гц		—75 дБн/Гц, номинально
(от 20 до 30°C, центральная	100 Гц	—94 дБн/Гц	—100 дБн/Гц (тип. значение)
частота CF = 1 ГГц)	1 кГц	—121 дБн/Гц	—125 дБн/Гц (тип. значение)
	10 кГц	—129 дБн/Гц	—132 дБн/Гц (тип. значение)
	30 кГц	—130 дБн/Гц	—132 дБн/Гц (тип. значение)
	100 κΓц	—129 дБн/Гц	—131 дБн/Гц (тип. значение)
	1 МГц	—145 дБн/Гц	—146 дБн/Гц (тип. значение)
	10 МГц	—155 дБн/Гц	—158 дБн/Гц (тип. значение)

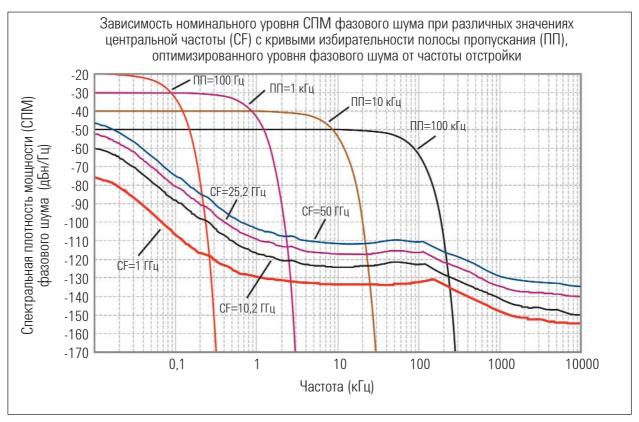


Рисунок 3 - Номинальный уровень фазового шума анализаторов РХА при различных значениях центральной частоты

Опция МРВ (обход микроволнового преселектора) 1		
Диапазон частот		
N9030A-508	от 3,6 до 8,4 ГГц	
N9030A-513	от 3,6 до 13,6 ГГц	
N9030A-526	от 3,6 до 26,5 ГГц	
N9030A-543	от 3,6 до 43 ГГц	
N9030A-544	от 3,6 до 44 ГГц	
N9030A-550	от 3,6 до 50 ГГц	

^{1.} Если опция MPB установлена и включена, некоторые свойства рабочих характеристик анализатора изменяются. Для получения более подробной информации следует обращаться к Руководству по техническим характеристикам анализаторов сигналов РХА (PXA Signal Analyzer Specification Guide).

Гарантированные характеристики набора измерений мощности

Мощность в основном канале		
Погрешность измерения уровня,	±0,61 дБ (±0,19 дБ, 95-й процентиль)	
WCDMA или IS95		
Занимаемая полоса частот		
Погрешность измерения частоты	±[полоса обзора/1000], номинально	
Мощность в соседнем канале		
Погрешность измерения относительной утечки мощности в соседнем канале (ACLR) системы W-CDMA (при заданных уровнях на смесителе и диапазонах измерения ACLR)	Соседний канал	Другие каналы
мобильные станции (нежелат. излучение) базовые станции	±0,09 дБ ±0,18 дБ	±0,16 дБ ±0,31 дБ
Динамический диапазон (тип. значения) Коррекция шума выключена Коррекция шума включена Число измеренных пар каналов	–82,5 дБ –83,5 дБ (–88 дБ ¹) от 1 до 6	–87 дБ –87 дБ
с различными частотными отстройками		
Мощность множественной несущей		
Погрешность измерения относительного уровня мощности в соседнем канале (ACPR) системы 3GPP W-CDMA (четыре несущих, отстройка 5 МГц, базовая станция (BTS), диапазон измерения ACPR от —42 до —48 дБ, оптимальный уровень на смесителе —21 дБм)	±0,13 дБ	
Число множественных несущих	до 12	
Дополняющая интегральная функция	• • • • • • • • • • • • • • • • • • • •	
Разрешающая способность гистограммы	0,01 дБ	
Гармонические искажения		
Максимальный номер гармоники	10-я	
Результаты измерения	мощность основной составляющей (дБм), с суммарный коэффициент гармоник в %	относительная мощность гармоник (дБн),
Интермодул. искажения третьего порядка (TOI)	Измерение интермодуляционных искажений	й третьего порядка и точек пересечения от двух тонов.
Мощность пакета		
Методы измерения	мощность выше установленного порога, мо	ощность в пределах ширины пакета
Результаты измерения	выходная мощность одиночного пакета, сроминимальная мощность внутри пакета, ши	едняя выходная мощность, максимальная мощность, рина пакета
Паразитное излучение		
3GPP W-CDMA (поиск паразитных сигналов		тных областей)
Динамический диапазон (от 1 до 3,6 ГГц)	97,1 dB	(101,9 дБ, тип. значение)
Абс. чувствительность (от 1 до 3,6 ГГц)	—86,4 дБм	(—90,4 дБм, тип. значение)
Спектральная маска излучения (SEM	n)	
cdma2000® (отстройка 750 кГц) относительный динамический диапазон абсолютная чувствительность относительная погрешность	81,6 дБ —101,7 дБм ±0,08 дБ	(86,4 дБ, тип. значение) (—105,7 дБм, тип. значение)
3GPP W-CDMA (отстройка 2,515 МГц) : относительный динамический диапазон абсолютная чувствительность относительная погрешность	85,4 дБ —101,7 дБм ±0,08 дБ	(89,8 дБ, тип. значение) (—105,7 дБм, тип. значение)

^{1.} Номинальные значения базируются на результатах измерений, выполненных вручную при испытаниях первых заводских образцов. Эти измерения были проведены на частотах около 2 ГГц общепринятого рабочего диапазона W-CDMA.

Общие характеристики

Диапазон температур	
Рабочий	от 0 до +55 °C
Предельный (хранение)	от −40 до +70 °C
Высота	
	4500 м (приблизительно 14760 футов)
ЭМС	

Соответствует требованиям европейского нормативного документа по ЭМС European EMC Directive 2004/108/EC,

а также требованиям следующих стандартов:

- IEC/EN 61326-1 или IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A 1
- AS/NZS CISPR 11:2002
- ICES/NMB001

Данное устройство относится к приборам производственного, научного и медицинского назначения (ISM) и соответствует нормативным требованиям стандарта ICES-001 (Канада).

Техника безопасности

Соответствует требованиям европейского нормативного документа European Low Voltage Directive 73/23/EEC для низковольтной аппаратуры с исправлениями 93/68/EEC, а также требованиям следующих стандартов:

- IEC/EN 61010-1, 2-я редакция
- Канада: CSA C22.2 No. 61010-1
- США: UL 61010-1, 2-я редакция

• США. ОТ ОТОТО-Т, 2-я редакция	
Акустический шум (соответствие тре	ебованиям немецких нормативных документов к уровню шума)
Эмиссия акустических шумов	Эмиссия акустических шумов
Уровень звукового давления <70 дБ	Уровень звукового давления <70 дБ
Место оператора	На рабочем месте
Нормальная эксплуатация	Нормальная эксплуатация
В соответствии с документом ISO 7779	В соответствии с документом DIN 45635 t.19
Акустический шум - дополнительна	я информация
(Приведённые значения соответствуют треб	ованиям стандарта ISO 7779 для оператора, работающего сидя)
Температура окружающей среды	
< 40 °C	Номинальное значение уровня звукового давления менее 55 dBA. Значение 55 дБА
	обычно считается приемлемым для использования в помещениях с низким уровнем шума.
≥ 40 °C	Номинальное значение уровня звукового давления менее 65 dBA. Значение 65 дБА
	обычно считается приемлемым для использования в зашумленных помещениях.

Климатические и механические воздействия

Образцы этого изделия испытаны на соответствие воздействия требованиям нормативного документа Environmental Test Manual компании Agilent. Испытания подтвердили его устойчивость к климатическим и механическим воздействиям в процессе хранения, транспортирования и эксплуатации; в частности, проведены типовые испытания прибора с применением таких воздействующих факторов, как температура, влажность, удары, вибрация, пониженное давление и изменения напряжения питания. Методики испытаний соответствуют требованиям стандарта MЭК IEC 60068:2, а уровни воздействующих факторов - близки к требованиям военного стандарта MILPRF-28800F Class 3.

Требования к сети питания	
Напряжение и частота (номинально)	от 100 до 120 В, 50/60/440 Гц
	от 220 до 240 В, 50/60 Гц
Потребляемая мощность	
рабочий режим (питание включено)	450 Вт (режим полной нагрузки с опциями)
режим готовности	40 Bt

1. Анализатор N9030A полностью совместим по уровню излучений со стандартом CISPR 11, Class A и задекларирован в качестве такового. Кроме того, по результатам испытаний N9030A по уровню излучений не превысил предельных значений стандарта CISPR 11, Class B. Информация о соответствии характеристик N9030A требованиям стандарта CISPR 11, Class B по уровню изучений предоставляется пользователям для их удобства, но не предназначена для использования в качестве регулирующего документа.

Дисплей	
Разрешение Размер	1024 x 768, XGA 213 мм (8,4 дюйма) по диагонали (номинально)
Устройства запоминания данных	
Внутреннее	съёмный накопитель на жёстких магнитных дисках (80 Гбайт)
Внешнее	поддерживает устройства запоминания данных, совместимые с USB 2.0
Масса (без опций)	
Без упаковки В упаковке	22 кг (48 фунтов), номинально 34 кг (75 фунтов), номинально
Габаритные размеры	
Высота Ширина Глубина	177 мм (7,0 дюймов) 426 мм (16,8 дюймов) 556 мм (21,9 дюймов)
Гарантийный срок	

Гарантийный срок для анализаторов сигналов серии РХА составляет один год.

Периодичность калибровки

Рекомендуемая периодичность калибровки один год; услуги по калибровке доступны в сервисных центрах компании Agilent.

Входы и выходы

Передняя панель	
RF input (вход РЧ сигнала)	
Станд. комплектация	тип соединителя: тип N, розетка, 50 Ом, номинально
(опции 503, 508, 513, 526)	·
Опция СЗ5 (только с опцией 526)	тип соединителя: АРС 3,5 мм, вилка, 50 Ом, номинально
Станд. комплектация (опции 543, 544, 550)	тип соединителя: 2,4 мм, вилка, 50 Ом, номинально
Probe power (питание пробника)	
Напряжение/сила тока (номинально)	+15 В постоянного тока, ±7% при максимальном токе 150 мА
	—12,6 В постоянного тока, ±10% при максимальном токе 150 мА
Порты USB 2.0	
Главное устройство (2 порта)	
Стандартная комплектация Тип соединителя	совместимость с USB 2.0 USB ТуреА (розетка)
тип соединителя Выходной ток	0,5 А, номинально
Гнездо для подключения наушников	гнездо для миниатюрных стереофонических наушников (3,5 мм, известно также как "1/8 дюйма")
Подключение внешних преобразоват	
	елей частогы, опция сліч
Порт для подключения	ONTORON AM2
Соединитель Импеданс	SMA, розетка 50 Ом, номинально
импеданс Функции	тройное назначение: подача смещения для смесителя, вход сигнала ПЧ, выход сигнала гетеродина
Диапазон смещения для смесителя	троиное назначение. подача смещения для смесителя, вход сигнала 111, выход сигнала тетеродина ±10 мA с шагом 10 мкА
цианазон смещения для смесителя Центральная частота входного сигнала ПЧ)	± 10 mi to malium 10 mina
Узкополосный тракт ПЧ	322,5 МГц
Тракт ПЧ с полосой пропускания 40 МГц	250,0 ΜΓμ
Диапазон частот вых. сигнала гетеродина	от 3,75 до 14,0 ГГц
Задняя панель	
10 MHz out (выход сигнала 10 МГц)	
Тип соединителя	BNC, розетка, 50 Ом, номинально
Уровень выходного сигнала	≥ 0 дБм, номинально
Погрешность частоты 10 МГц	±(10 МГц х погрешность опорной частоты)
Ext Ref In (вход внешнего опорного сигнала)	
Тип соединителя	BNC, розетка, 50 Ом, номинально
Диапазон уровней входного сигнала	от —5 до +10 дБм, номинально
Частота входного сигнала	от 1 до 50 МГц, номинально
Полоса синхронизации частоты	±5 x 106 от заданной частоты внешнего входного опорного сигнала
Trigger 1 In и Trigger 2 In (входы запуска 1 и 2)	
Тип соединителя	ВИС, розетка
Импеданс	> 10 кОм, номинально
Диапазон уровней запуска	от —5 до +5 B; заводская установка - ТТЛ
Trigger 1 Out и Trigger 2 Out (выходы запуска 1 и 2)	
(выходы запуска т и z) Тип соединителя	ВИС, розетка
тип соединителя Импеданс	50 Ом, номинально
Уровень	от 0 до 5 В; заводская установка - ТТЛ
Sync (зарезервировано для будущего	
использования)	
Тип соединителя	ВNС, розетка
Выход монитора	
Тип соединителя	совместим с VGA, 15-контактный мини D-SUB
Формат	XGA (частота кадровой синхронизации 60 Гц, без чередования),
	аналоговый сигнал красного, зеленого, синего (RGB)
Разрешение	1024 х 768 точек
Noise source drive +28 V (pulsed)	
(выдача напряжения постоянного тока +28 В	
для источников шума 346A, 346B и 346C	
компании Agilent) Тип соединителя	ВИС, розетка
тип соединителя Выходное напряжение	включено: 28,0 ± 0,1 B (60 мА максимум); выключено: < 1 B
Былодное паприлоние	515110 10110. 2010 ± 0,1 D (00 IIIF (IIII(NOFIIII)) DDII(011011010. \ 1 D

Задняя панель	
SNS series noise source	Для использования с источниками шума серии SNS компании Agilent
Digital bus (зарезервировано для будущего	
использования)	
Тип соединителя	MDR-80
Analog out (аналоговый выход)	
Соединитель	BNC, розетка
Порты USB 2.0	
Главное устройство (4 порта)	HOD O O
Стандарт	совместимы с USB 2.0
Тип соединителя	USB Туре-А, розетка
Выходной ток	0,5 А, номинально
Подчинённое устройство (1 порт)	conversar a LICD 2.0
Стандарт Тип соединителя	совместим с USB 2.0 USB Туре-В, розетка
тип соединителя Выходной ток	
Интерфейс GPIB	0,5 А, номинально
интерфеис GPIB Тип соединителя	соединитель шины IEEE-488
ин соединителя Интерфейсные функции	СОЕДИНИТЕЛЬ ШИНЫ Т.С.С400 SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
Режим GPIB	контроллер или устройство
Интерфейс LAN TCP/IP	коптрольтер или устроиство
Стандарт	1000Base-T
Тип соединителя	RJ45 Ethertwist
IF Output (выход сигнала ПЧ)	TIO TO Editorial
Тип соединителя	SMA, розетка, используется совместно с опциями CR3, CRP и ALV
Импеданс	50 Ом, номинально
Второй выход ПЧ, опция CR3	or only nonlinearing
Центральная частота	
Режим анализатора спектра или	
І/О анализатора с полосой ПЧ ≤ 25 МГц	322,5 МГц
с опцией В40	250 МГц
с опцией В1Х	300 МГц
Коэффициент передачи преобразования	от –1 до +4 дБ, номинально, плюс АЧХ
Полоса пропускания	
Нижний диапазон	140 МГц, номинально, несимметричная
Верхний диапазон, с преселектором	зависит от центральной частоты
Верхний диапазон, обход преселектора	до 700 МГц
Программируемый выход ПЧ, опция	CRP
Центральная частота	
Диапазон	от 10 до 75 МГц (устанавливается пользователем)
Разрешающая способность	0,5 МГц
Коэффициент передачи преобразования	от −1 до +4 дБ, номинально, плюс AЧX
Полоса пропускания	
Выход ПЧ 70 МГц	
Нижний или верхний диапазон	100 МГц, номинально
в режиме обхода преселектора	
Выбранный диапазон, с преселектором	Зависит от центральной частоты
Более низкие выходные частоты	Подвергаются свёртыванию
Остаточные выходные сигналы	≤ −88 дБм, номинально
	•• •

Другие дополнительные выходы

Выход логарифмического видеоусилителя опции ALV

Технические характеристики порта о	бщего назначения	
Соединитель Импеданс	SMA, розетка	Используется совместно с другими опциями 50 Ом, номинально
Выход быстродействующего логарис	омического видеоусилителя	
Выходное напряжение Максимальное значение Наклон	Показаны значения напряжения для открыто 1,6 В при —10 дБм, номинально 25 ±1 мВ/дБ, номинально	й схемы
Точность логарифмической характеристики Диапазон Погрешность в пределах диапазона	57 дБ, номинально ±1,0 дБ, номинально	
Время нарастания	15 нс, номинально	
Время спада Полосы 1-4 с опцией MPB В других случаях	40 нс, номинально, наилучший случай, Зависит от полосы пропускания	

Выход видеоусилителя оси У опции YAV

зыход видеоусилителя оси т опции тА		
Технические характеристики порта	общего назначения	
Соединитель	SMA, розетка	Используется совместно с другими опциями
Импеданс		50 Ом, номинально
Вывод видеосигнала экранного изоб	бражения	
Рабочие условия		
Шкала дисплея	логарифмическая или линейная	"Lin" - линейная шкала (калибрована в вольта:
Логарифмические шкалы	все (от 0,1 до 20 дБ/дел)	
Режимы	только в режиме анализа спектра	
Временное стробирование	должно быть выключено	
Масштабирование выходного сигнала	·	бражение от нижней до верхней границы экрана
Смещение	±1% от полной шкалы, номинально	
Погрешность коэффициента усиления	±1% от напряжения выходного сигнала, ног	
Задержка между входом РЧ сигнала и	71,7 мкс +2,56/(полоса пропускания) + 0,1	59/(полоса видеофильтра), номинально
аналоговым выходом		
Вывод видеосигнала в логарифмиче	еском масштабе (огибающая в логарис	фмическом масштабе)
Динамический диапазон (нагрузка 50 Ом)		
Максимальное значение	1,0 В, номинально, для значения на смесите	еле —10 дБм
Масштабный коэффициент	1 В в расчёте на 192,66 дБ	
Полоса пропускания	Устанавливается при выборе пункта меню F	RBW
Режим работы	В пункте меню Select Sweep Туре выбрать S	wept
Вывод видеосигнала в линейном ма	сштабе (демодуляция АМ сигналов)	
Динамический диапазон (нагрузка 50 Ом)		
Максимальное значение	1,0 В, номинально, для огибающей РЧ сигна	ала на опорном уровне
Минимальное значение	0 B	
Масштабный коэффициент	Если уровень несущей установлен равным г	половине опорного уровня в вольтах, масштабный
	коэффициент равен 200% от уровня несущ	ей в вольтах. Безотносительно к уровню несущей
	масштабный коэффициент равен 100% от с	порного уровня в вольтах.
Полоса пропускания	Устанавливается при выборе пункта меню F	RBW
Режим работы	В пункте меню Select Sweep Туре выбрать S	wept

І/О анализатор

от 10 Гц до 10 МГц				
от 10 Гц до 40 МГц				
от 10 Гц до 140 МГц				
метров спектра)				

			іана-Харриса) и Kais	er Bessel
· · · · · · · · · · · · · · · · · · ·	дь, к-в 90 дь и	К-В 110 дь		
,				

<u> </u>	<u> </u>	<u> </u>		
				01/0
		•		CK3,
анализа (іVІІ Ц)	погрешность	центр. частоте (95-й процентиль)	(дь/ IVII ц) (95-й процентиль)	номинально
≤ 10	±0,20 дБ	±0,12 дБ	±0,10 дБ	0,02 дБ
≤ 10, с преселектором				0,23 дБ
	±0,25 дБ	±0,12 дБ	±0,10 дБ	0,02 дБ
				0,12 дБ
≤ 10, обход преселектора ¹	±0,30 дЬ	±0,12 дЬ	±0,10 дЬ	0,024 дБ
Полоса (МГц)	Преселектор			CK3,
				номинально
				0,012°
				0,022°
				0,024°
ПЧ с полосой 10 МГц -	- стандартная	комплектация)		
			комбинационных п	омех и
			<u> </u>	
				OF . OO MAE
			Центральная часто	
—10 дБм			—8 дБм, номинальн	10
—20 дБм			—8 дБм, номинальн —17,5 дБм, номина	10
	ных шумов + эф	офект усиления трак	—8 дБм, номинальн —17,5 дБм, номина	10
—20 дБм (средний уровень собствен	,	. , .	—8 дБм, номинальн —17,5 дБм, номина	10
—20 дБм	,	. , .	—8 дБм, номинальн —17,5 дБм, номина	10
—20 дБм (средний уровень собствен	,	. , .	—8 дБм, номинальн —17,5 дБм, номина	10
—20 дБм (средний уровень собствен	,	ция)	—8 дБм, номинальн —17,5 дБм, номина	ю льно
—20 дБм (средний уровень собствен ой 10 МГц - стандартна	ая комплектац	ция) ПП ~540 Гц для по.	—8 дБм, номинальн —17,5 дБм, номина та ПЧ) + 2,25 дБ	о льно комплектация)
—20 дБм (средний уровень собствен ой 10 МГц - стандартна 131072 выборок (макс.)	ая комплектац	ция) ПП ~540 Гц для по.	—8 дБм, номинальн —17,5 дБм, номина та ПЧ) + 2,25 дБ посы 10 МГц (станд.	о льно комплектация)
	от 10 Гц до 140 МГц метров спектра) от 100 мГц до 3 МГц от 50 Гц до 3 МГц от 100 мГц до 100 Гц гот 100 мГц до 100 Гц Гантров (с плоской вершин баиззіап (Гаусса), ВІаскта (Кайзера-Бесселя): К-В 70 ов сигналов) от 10 Гц до 10 МГц от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 140 МГц Тот 10 Гц до 140 МГц От 10 Гц до 140 МГц	от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 140 МГц метров спектра) от 100 мГц до 3 МГц от 50 Гц до 3 МГц от 100 мГц до 10 кГц от 100 мГц до 10 кГц от 100 мГц до 100 Гц Flattop (с плоской вершиной, Uniform (равнбаиззіап (Гаусса), Вlасктап (Блэкмана), Blackman (Блэкмана), B	от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 140 МГц метров спектра) от 100 мГц до 3 МГц от 50 Гц до 3 МГц от 100 мГц до 100 Гц Flattop (с плоской вершиной, Uniform (равномерная), Hanning () Gaussian (Гаусса), Blackman (Блэкмана), Blackman-Harris (Блэкм (Кайзера-Бесселя): К-В 70 дБ, К-В 90 дБ и К-В 110 дБ ов сигналов) от 10 Гц до 10 МГц от 10 Гц до 10 МГц от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 40 МГц От 10 Гц до 140 МГц От	от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 140 МГц метров спектра) от 100 мГц до 3 МГц от 50 Гц до 3 МГц от 1 Гц до 100 кГц от 100 мГц до 100 Гц Flattop (с плоской вершиной, Uniform (равномерная), Hanning (Хеннинга), Hamming Gaussian (Гаусса), Blackman (Блэкмана), Blackman-Harris (Блэкмана-Харриса) и Kais (Кайзера-Бесселя): К-В 70 дБ, К-В 90 дБ и К-В 110 дБ ов сигналов) от 10 Гц до 10 МГц от 10 Гц до 10 МГц от 10 Гц до 25 МГц от 10 Гц до 40 МГц от 10 Гц до 40 МГц от 10 Гц до 140 МГц Те сполосой 10 МГц - стандартная комплектация демодуляции и БПФ относительно центральной частоты) Полоса анализа (МГц) ≤ 10 ±0,20 дБ ±0,12 дБ ±0,10 дБ ≤ 10, с преселектором ≤ 10, обход преселектором ≤ 10 выключен 1 0,10° ≤ 10 выключен 0,11° ПЧ с полосой 10 МГц - стандартная комплектация) За исключением стемобинационных пларазитных отклики паразитных отклики

^{1.} Опция МРВ установлена и включена.

^{2.} Для более глубокого захвата данных рекомендуется использовать програмное обеспечение векторного анализа сигналов 89600В или N9064А.

Опция В25 (полоса анализа 25 МГц) автоматически включена в опции 40 и В1Х

Опция B25 (полоса анализа 25 MI г	4	на в опции 40 и	ВІХ		
Неравномерность АЧХ тракта Г	14 опции B25				
Неравномерность АЧХ тракта ПЧ (при	демодуляции и БПФ относи	ительно централы	ной частоты)		
Диапазон частот (ГГц)	Полоса анализа (МГц)	Максимальная погрешность	Погрешность на центр. частоте (95-й процентиль)	Наклон (дБ/МГц) (95-й процентиль)	СКЗ, номинально
≤ 3.6	от 10 до ≤ 25	±0,30 дБ	±0,12 дБ	±0,05 дБ	0,02 дБ
от 3,6 до 26,5	от 10 до ≤ 25, с преселектором				0,50 дБ
от 3,6 до 26,5	от 10 до ≤ 25, обход преселектора ¹	±0,40 дБ			0,03 дБ
от 26,5 до 50	от 10 до ≤ 25, с преселектором				0,31 дБ
от 26,5 до 50	от 10 до ≤ 25, обход преселектора ¹	±0,40 дБ			0,02 дБ
Нелинейность ФЧХ тракта ПЧ					
Центральная частота (ГГц)	Полоса (МГц)	Преселектор	Размах, номинально		СКЗ, номинально
≥ 0,02, < 3,6 ≥ 3,6	≤ 25 ≤ 25	неприменимо выключен ¹	0,14° 0,25°		0,028° 0,043°
Динамический диапазон (тракт	ПЧ опции В25)				
Полная шкала (ограничение АЦП)					
Установки по умолчанию, сигнал на центральной частоте (СF) (усиление тракта ПЧ = низкое) Полоса 0 Полосы 1-4	уровень на смесителе —8 уровень на смесителе —7				
Установка с высоким усилением ПЧ, (усиление тракта ПЧ = высокое) Полоса 0 Полосы 1-4	уровень на смесителе —1 уровень на смесителе —1				
Эффект от частоты сигнала ≠ CF	до ± 3 дБ, номинально				
Сбор данных (тракт ПЧ опции Е	325)				
Длительность записи Комплексный спектр Сигнал Частота дискретизации Разрешение АЦП	131072 выборок (макс.) 4000000 выборок (макс.) 100 Мвыб/с 16 бит	2	ПП ~900 Гц для по. 4000000 выборок ~	лосы 25 МГц ~128 мс при полосе	25 МГц

^{1.} Опция МРВ установлена и включена.

^{2.} Для более глубокого захвата данных рекомендуется использовать програмное обеспечение векторного анализа сигналов 89600В или N9064A.

Опция В40 (полоса анализа 40 МГц) автоматически включена в опцию В1Х

Опция В40 (полоса анализа 40 МГ	ц) автоматически включе	ена в опцию В1)	(
Неравномерность АЧХ тракта Г	74 опции B40				
Неравномерность АЧХ тракта ПЧ				Относительно цеі	нтральной частоты
Центральная частота CF (GHz)	Полоса (МГц)	Преселектор		Тип. значение	СКЗ, номинально
≥ 0,03, < 3,6	≤ 40	неприменимо	± 0,4 дБ	± 0,25 дБ	0,05 дБ
\geq 3,6, \leq 8,4	≤ 40	выключен ¹	± 0,4 дБ	± 0,16 дБ	0,05 дБ
> 8,4, ≤ 26,5	≤ 40	выключен ¹	± 0,7 дБ	± 0,20 дБ	0,05 дБ
≥ 26,5, < 34,4	≤ 40	выключен ¹	± 0,8 дБ	± 0,25 дБ	0,1 дБ
≥ 34,4, < 50	≤ 40	выключен ¹	± 1,0 дБ	± 0,35 дБ	0,1 дБ
Нелинейность ФЧХ тракта ПЧ (отклонение от усреднё	ённой линейно	й ФЧХ)		
Центральная частота (ГГц)	Полоса (МГц)	Преселектор		Размах,	CK3,
				номинально	номинально
≥ 0,03, < 3,6	≤ 40	неприменимо		0,078°	0,017°
≥ 3,6	≤ 40	выключен ¹		0,37°	0,1°
EVM (минимальный уровень измерени	ия модуля вектора ошибки (EVM) для сигнала	а стандарта 802.11	g OFDM, используя у	странение частотных и
фазовых искажений, измерение параг	метров канала и коррекцию	данных, обеспеч	иваемые программ	ным обеспечением 8	39600B)
2,4 ГГц				– 52,0 дБ (0,25%)	, номинально
5,8 ГГц с опцией МРВ				—49,1 дБ (0,35%)	, номинально
Динамический диапазон (тракт	ПЧ опции В40)				
Динамический диапазон, свободный					
от паразитных составляющих (SFDR)					
частота сигнала в пределах ±12 МГц	—80 дБн, номинально				
от центральной частоты (СF)	д,				
Частота сигнала где-нибудь					
в пределах полосы анализа					
Паразитные отклики в пределах	—79 дБн, номинально				
±18 МГц от центра					
Паразитные отклики везде	—77 дБн, номинально				
в пределах полосы анализа					
Полная шкала (ограничение АЦП)					
Установки по умолчанию,					
сигнал на центральной частоте (СF)					
(усиление тракта ПЧ = низкое,					
смещение усиления ПЧ = 0 дБ)					
Полоса 0	уровень на смесителе —8				
Полосы 1-4	уровень на смесителе —7	дБм, номинально	0		
Установка с высоким усилением ПЧ,					
сигнал на центральной частоте (СF)					
(усиление тракта ПЧ = высокое)					
Полоса 0	уровень на смесителе —1			•	
Полосы 1-4	уровень на смесителе —1	/ дЬм, номиналы	но, при условии огр	раничения усиления	
Эффект от частоты сигнала ≠ CF	до ± 3 дБ, номинально				

^{1.} Опция МРВ установлена и включена.

Опция В40 (полоса анализа 40 МГц)

Сбор данных (тракт ПЧ опции В40)					
Длительность записи					
IQ анализатор	4000000 пар выборок IQ				
Программное обеспечение 89600B VSA или N9064A VXA	32-битовые данные	64-битовые данные			
Длина (число пар выборок IQ) Длительность (время)	536 Мвыб (2 ²⁹ выб)	268 Мвыб (2 ²⁸ выб)	полная ёмкость памяти 2 Гбайта число выборок/(полоса x 1,28)		
Частота дискретизации					
АЦП	200 Мвыб/с				
Пар Ю			полоса х 1,28		
Разрешение АЦП	12 бит				

І/О анализатор (продолжение)

Опция В1Х (полоса анализа 140 МГц)

Опция ВТХ (полоса анализа Т40 МГц)					
Неравномерность АЧХ тракта ПЧ оп	ции В1Х)				
Неравномерность АЧХ тракта ПЧ					
Центральная частота CF (ГГц)	Полоса (МГц)	Преселектор		Тип. значение	СКЗ, номинально
≥ 0,1, < 3,6	≤ 80	неприменимо	± 0,6 дБ	± 0,17 дБ	0,05 дБ
	≤ 140	неприменимо	± 0,6 дБ	± 0,25 дБ	0,05 дБ
≥ 3,6, ≤ 8,4	≤ 80	выключен ¹	± 0,73 дБ	± 0,2 дБ	0,05 дБ
	≤ 140	выключен ¹	± 0,8 дБ	± 0,35 дБ	0,05 дБ
> 8,4, ≤ 26,5	≤ 80	выключен ¹	± 1,10 дБ	± 0,50 дБ	0,1 дБ
	≤ 140	выключен ¹	± 1,30 дБ	± 0,75 дБ	0,1 дБ
≥ 26,5, ≤ 50	≤ 80	выключен ¹	± 1,20 дБ	± 0,45 дБ	0,12 дБ
	≤ 140	выключен ¹	± 1,40 дБ	± 0,65 дБ	0,12 дБ
Нелинейность ФЧХ тракта ПЧ (отклонение от усреднённой линейной ФЧХ)					
Центральная частота (ГГц)	Полоса (МГц)	Преселектор		Размах,	CK3,
				номинально	номинально
≥ 0,03, < 3,6	≤ 140	неприменимо		0,11°	0,02°
≥ 3,6	≤ 140	выключен ¹		1,3°	0,3°
EVM (минимальный уровень измерения	Требуется настройка установок, обход преселектора (опция МРВ) выше полосы 0				
модуля вектора ошибки)					
Случай 1: 62,5 Мсимволов/с, сигнал 160А	.M, фильтр RRC (α =	= 0,2), без коррек	ции, с приблизител	ьной шириной зани	ıмаемой
полосы частот 75 МГц					
Полоса 0, 1,8 ГГц	0,8%, номинально				
Полоса 1, 5,95 ГГц 1,1%, номинально					
Случай 2: 104,167 Мсимволов/с, сигнал 1	60AM, фильтр RRC	$(\alpha = 0.35)$, без ко	оррекции, с прибли:	зительной шириной	і занимаемой
полосы частот 140 МГц					
Полоса 1, 5,95 ГГц	3,0%, номинально		0,5%, номинально		
Полоса 2, 15,3 ГГц	2,5%, номинально		0,6%, номинально		
Полоса 4, 26 ГГц	3,5%, номинально	, ,	1,6%, номинально	(с коррекцией)	
Эффект от частоты сигнала ≠ CF	до ± 3 дБ, номина	ЛЬНО			

^{1.} Опция МРВ установлена и включена.

Опция В1Х (полоса анализа 140 МГц)

Динамический диапазон (тракт ПЧ о	ELIMA R1V			
	ПЦИИ БТА)			
Динамический диапазон, свободный				
от паразитных составляющих (SFDR)				
Частота сигнала в пределах ±12 МГц	—75 дБн, номинально			
от центральной частоты (СF)				
Частота сигнала где-нибудь				
в пределах полосы анализа				
Паразитные отклики в пределах	—74 дБн, номинально			
±63 МГц от центра				
Паразитные отклики вездеь	—72 дБн, номинально			
в пределах полосы анализа				
Полная шкала (ограничение АЦП)				
Установки по умолчанию,				
сигнал на центральной частоте (СF)				
(усиление тракта ПЧ = низкое,				
смещение усиления ПЧ = 0 дБ)				
Полоса 0	уровень на смесителе —8 дБм, номинально			
Полосы 1-4	уровень на смесителе –7 дБ	м, номинально		
Установка с высоким усилением ПЧ,				
сигнал на центральной частоте (СF)				
(усиление тракта ПЧ = высокое)				
Полоса 0	уровень на смесителе —18 дБм, номинально, при условии ограничения усиления			
Полосы 1-4	уровень на смесителе —17 дБм, номинально, при условии ограничения усиления			
Эффект от частоты сигнала ≠ СF	до ± 3 дБ, номинально			
Сбор данных (тракт ПЧ опции В1Х)				
Длительность записи				
IQ анализатор	4000000 пар выборок IQ			
Программное обеспечение				
89600B VSA или N9064A VXA	32-битовые данные	64-битовые данные		
Длина (число пар выборок IQ)	536 Мвыб (2 ²⁹ выб)	268 Мвыб (2 ²⁸ выб)	макс. ёмкость памяти 2 Гбайта	
Длительность (время)			число выборок/(полоса х 1,28)	
Частота дискретизации				
АЦП	400 Мвыб/с			
Пар IQ			полоса х 1,28	
Разрешение АЦП	14 бит			

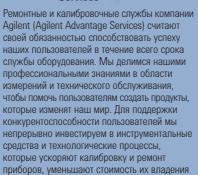
Тематическая литература

Анализаторы сигналов РХА компании Agilent

Брошюра	5990-3951EN
Руководство	5990-3953EN
по конфигурированию	

Для получения более подробной информации или доступа к литературным источникам следует обращаться на сайт: www.agilent.com/find/pxa

Дополнительную информацию, включая литературные источники, можно найти на web-сайте компании Agilent:


www.agilent.com/find/PXA www.agilent.com/find/xseries_apps

ISO 9001:2008 Quality Management System

www.agilent.com/quality

Agilent Advantage Services

www.agilent.com/find/advantageservices

и обеспечивают продвижение вперёд в соответствии с планами развития.

www.agilent.com

Для получения дополнительной информации по продуктам компании Agilent Technologies, предназначенным для измерений и испытаний, а также по их применению и обслуживанию, пожалуйста, обращайтесь в Российское представительство компании Agilent Technologies по адресу:

Россия, 113054, Москва, Космодамианская набережная, д. 52, стр. 1 Тел: (495) 797 3963, 797 3900 Факс: (495) 797 3902, 797 3901 E-mail: tmo_russia@agilent.com или посетите нашу страницу в сети Internet по адресу: www.agilent.ru

Технические характеристики и описания изделий, содержащиеся в данном документе, могут быть изменены без предварительного уведомления.

© Авторское право Agilent Technologies, Inc. 2011 Отпечатано в России в августе 2011 года **Номер публикации 5990-3952RURU**

Agilent Email Updates

www.agilent.com/find/emailupdates

По этому адресу пользователь может получить новейшую информацию по выбираемым им изделиям и вопросам их применения.

www.lxistandard.org

LXI (LAN eXtensions for Instrumentations - расширения шины LAN для измерительной техники) оснащает возможностями сети Ethernet и Интернета измерительные системы. Компания Agilent является членом-учредителем консорциума LXI.

Торговые партнёры Agilent

www.agilent.com/find/channelpartners

По этому адресу пользователь может получить лучшее из двух миров: глубокие профессиональные знания в области измерительной техники и широкая номенклатура выпускаемой продукции компании Agilent в сочетании с удобствами, предоставляемыми торговыми партнёрами.

cdma2000® - зарегистированный сертификационный знак Ассоциации телекоммуникационной промышленности США. Используется по лицензии.

