

Измерение искажений с помощью анализатора спектра \$3302 (часть 2)

Установите выходной сигнал генератора сигналов:

Установите частоту генератора сигналов на 1 ГГц и мощность на -10 дБм. Подключите выход генератора сигналов к входному порту анализатора спектра, как показано на рисунке ниже. Включите генерацию радиочастоты.

Рис.1 Измерительная установка

2) Установите начальную частоту и конечную частоту анализатора спектра.

- Нажмите кнопку [Reset].
- Нажмите [frequency], [Start Freq], 800[MHz], [Stop Freq] and 2.5[GHz].

Как показано на рис. 1, основной тон и вторая гармоника будут отображаться на экране.

Рис.2 Входной сигнал и гармоника

Авторские права принадлежат компании SalukiTechnology Перевод выполнен компанией ООО «Интермера» в 2022г. www.intermera.ru, www.pribor4test.ru

3) Установите полосу пропускания видео для сглаживания шума, чтобы улучшить разрешение.

• Нажмите [Bandwidth], [Video Bandwidth Auto <u>Man</u>], чтобы включить автоматическое отключение.

• Используйте кнопку [↓], чтобы уменьшить полосу пропускания видео.

4) Для того, чтобы повысить точность измерений, установить пиковый уровень основного тона в качестве опорного уровня.

• Нажмите [Peak] и [Peak Search] и прочтите пиковую мощность.

• Нажмите [Amplitude] и [Ref Level] и установите его как пиковую мощность. Результаты показаны на рис. 3.

09/05/201	6 08:18:37			-¢	幅度
参考 电平 -10.6 dBm	-10.6	M1	1.000600000 GH	z -10.59 dBm	参考 电平 -10.6 dBm
衰减 *10 dB	-20.6				参考位置
刻度/格 10.0 dB	-40.6 参考电	z			- 衰减器 自动 手动
*100 kHz	- 10.60	dBm			刻度/格 10.0 dB
*30 kHz	-60.6				刻度类型
6.800 s	-70.6		under all and a distance and a first of		幅度单位。
关 检波	-90.6	na mitti bisht biyan ni ni biyan ƙ	na distante este este en la constante de la	ann an taraith an taraith an taraith	dBm 前置放大器
标准 运行 本地	-100.6				<u>关</u> 开
连续 频谱分析	起始频率 800.00	00000 MHz	终止频率	2.50000000 GH	z
扫描	迹线	极限	测量	文件	系統

Рис. З Установка пики сигнала, как опорный уровень для максимальной точности

5) Активируйте второй маркер.

● Нажмите[Delta], и [Next Peak].

В этом случае фиксированный маркер находится на основном тоне, в то время как мобильный маркер находится на пике второй гармоники, как показано на рисунке 4.

09/05/201	16 08:1	8:37			-£	編度
			ΔM1	999.600000 MHz	-49.27 dB	余孝由亚
参考电平 -10.6 dBm	-10.6		M1	1.000600000 GHz	-10.59 dBm	-10.6 dBm
衰减 *10 dB	-20.6					参考位置
刻度/格 10.0 dB	-30.6	Δ光标1				衰減器 自动 手动
分辨率带宽 *100 kHz	-50.6	999.600000	MHz			刻度/格
视频带宽 *30 kHz	-60.6			·····		10.0 dB 刻度类型
扫描时间 6.800 s	-70.6					对数 线性
平均 关	-90.5					waa≋utu dBm >
检波 标准	-90.6					前置放大器 <u>关</u> 开
运行本地 连续	100.6	, 率 800.000000	MHz	终止短率	2.50000000 GH	
扫描		迹线	极限	测量	文件	系统

Рис.4 Измерение второй гармоники на основе разницы маркеров

6) Измерьте гармонические искажения (метод 1).

Основной тон и вторая гармоника, как показано на рисунке, имеют разность амплитуд около -60 дБ или гармоническое искажение 0,1% (см. Рисунок 5).

Рис. 5 Преобразование процента амплитуды гармонических искажений

Чтобы измерить третью гармонику, нажмите [Next Pk Right] и прочтите отношение амплитуд других гармоник к основной волне.

7) Измерьте гармонические искажения (метод 2).

• Нажмите[Amplitude], [Units] и [Volt].

В этом случае единица измерения дифференциального маркера автоматически изменится на вольт. Самый простой способ определить процент искажения - изменить единицу измерения на вольт. Переместите десятичную дробь пропорции, обозначенной правами дифференциального маркера, на два разряда, чтобы получить процент искажения. Минимальное отображаемое соотношение составляет 0,01 или 1%.

Теперь у Saluki есть следующие 5 серий анализаторов спектра, чтобы удовлетворить все ваши потребности в измерениях спектра.

Портативный анализатор спектра серии S3302 (9 кГц-20 ГГц / 44 ГГц) Анализатор спектра серии S3531 (9 кГц - 1,8 ГГц / 3 ГГц) Анализатор спектра серии S3532 (9 кГц - 3,6 ГГц / 7,5 ГГц) Портативный анализатор спектра серии S3331 (9 кГц - 3,6 ГГц / 7,5 ГГц) Анализатор спектра серии S3503 (3 Гц - макс. 50 ГГц)